Dr. Johannes Pfefferer

Publikationen

Wissenschaftliche Beiträge in Zeitschriften
Harbir Antil, Johannes Pfefferer, Mahamadi Warma:
A note on semilinear fractional elliptic equation: analysis and discretization
ESAIM: Mathematical Modelling and Numerical Analysis, published online, 2017. (doi:10.1051/m2an/2017023)
Harbir Antil, Johannes Pfefferer, Sergejs Rogovs:
Fractional Operators with Inhomogeneous Boundary Conditions: Analysis, Control, and Discretization
submitted, Preprint arXiv: 1703.05256, 2017.
Thomas Apel, Johannes Pfefferer, Max Winkler:
Error estimates for the postprocessing approach applied to Neumann boundary control problems in polyhedral domains
IMA Journal of Numerical Analysis, published online, 2017. (doi:10.1093/imanum/drx059)
Thomas Apel, Mariano Mateos, Johannes Pfefferer, Arnd Rösch:
Error estimates for Dirichlet control problems in polygonal domains
submitted, Preprint arXiv: 1704.08843, 2017.
Dominik Meidner, Johannes Pfefferer, Klemens Schürholz, Boris Vexler:
hp-Finite Elements for Fractional Diffusion
submitted, Preprint arXiv: 1706.04066, 2017.
Th. Apel, S. Nicaise, and J. Pfefferer:
Adapted numerical methods for the Poisson equation with $L^2$ boundary data in nonconvex domains.
SIAM Journal on Numerical Analysis, 55(4):1937--1957, 2017.
Thomas Apel, Serge Nicaise, Johannes Pfefferer:
Discretization of the Poisson equation with non-smooth data and emphasis on non-convex domains
Numer Methods Partial Differential Equations 32(5), pp. 1433-1454, 2016. (doi:10.1002/num.22057)
Thomas Apel, Mariano Mateos, Johannes Pfefferer, Arnd Rösch:
On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains
SIAM Journal on Control and Optimization 53(6), pp. 3620-3641, 2015. (doi:10.1137/140994186)
Ira Neitzel, Johannes Pfefferer, Arnd Rösch:
Finite element discretization of state-constrained elliptic optimal control problems with semilinear state equation
SIAM Journal on Control and Optimization, 53(2), pp. 874-904, 2015. (doi:10.1137/140960645)
Thomas Apel, Johannes Pfefferer, Max Winkler:
Local Mesh Refinement for the Discretisation of Neumann Boundary Control Problems on Polyhedra
Mathematical Methods in the Applied Sciences, 39(5), pp. 1206-1232, 2015. (doi:10.1002/mma.3566)
Klaus Krumbiegel, Johannes Pfefferer:
Superconvergence for Neumann boundary control problems governed by semilinear elliptic equations
Computational Optimization and Applications 61(2), pp. 373-408, 2015. (doi:10.1007/s10589-014-9718-0)
Thomas Apel, Johannes Pfefferer, Arnd Rösch:
Finite element error estimates on the boundary with application to optimal control
Mathematics of Computation 84, pp. 33-70, 2015. (doi:10.1090/S0025-5718-2014-02862-7)
Thomas Apel, Serge Nicaise, Johannes Pfefferer:
A dual singular complement method for the numerical solution of the Poisson equation with L2 boundary data in non-convex domains
Preprint arXiv: 1505.00414, 2015.
Thomas Apel, Johannes Pfefferer, Arnd Rösch:
Finite Element Error Estimates for Neumann Boundary Control Problems on Graded Meshes
Computational Optimization and Applications 52(1), pp. 3-28, 2012. (doi:10.1007/s10589-011-9427-x)

Wissenschaftliche Beiträge in Sammelbänden
Thomas Apel, Johannes Pfefferer, Arnd Rösch:
Locally refined meshes in optimal control for elliptic partial differential equations - an overview.
Trends in PDE Constrained Optimization: Günter Leugering, Peter Benner, Sebastian Engell, Andreas Griewank, Helmut Harbrecht, Michael Hinze, Rolf Rannacher, Stefan Ulbrich (ed.),
Springer Verlag, Basel, 2014. (doi:10.1007/978-3-319-05083-6_18)

Dissertation und Diplomarbeit
Numerical analysis for elliptic Neumann boundary control problems on polygonal domains
PhD Thesis, Universität der Bundeswehr München, 2014. (urn:nbn:de:bvb:706-3624)
Efficient recursive Formulation of Optimal Control Problems for Industrial Manipulators
Diploma Thesis, Technische Universität München, 2007.

Poster
Finite element error estimates for boundary control problems
6th Singular Days 2010, Berlin, 2010
Dirichlet boundary control problems: finite element discretization and error estimates
FEM-Symposium, Chemnitz, 2012
 
TUM Mathematik Rutschen TUM Logo TUM Schriftzug Mathematik Logo Mathematik Schriftzug Rutsche

picture math department

Impressum  |  Datenschutzerklärung  |  AnregungenCopyright Technische Universität München