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Exercise 3.1 (The semi-linear elliptic problem with Hessian): We consider again the
test problem from Ex. 2.1:

min
q∈L2(Ω),u∈H1(Ω)

J(q, u) = 1
2‖u− ud‖

2
L2(Ω) + α

2 ‖q‖
2
L2(Ω) (1a)

subject to
{
−∆u+ u+ σu3 = q in Ω,

∂nu = 0 on ∂Ω.
(1b)

To improve the performance of the optimization method, we now take into account second order
information.

1. For fixed q and u/z the corresponding discrete state/adjoint solution, the second derivative
can be computed (in the general case) as

j′′(q)(τq, δq) = L′′qq(q, u, z)(τq, δq) + L′′qu(q, u, z)(τq, δu) + L′′qz(q, u, z)(τq, δz) =
J ′′qq(q, u)(δq, τq)+J ′′qu(q, u)(δu, τq)−a′′qq(q, u)(δq, τq, z)−a′′qu(q, u)(δu, τq, z)−a′q(q, u)(τq, δz)

(2)

where δu is a solution of the tangent equation

a′u(q, u)(δu, ϕ) = −a′q(q, u)(δq, ϕ) for all ϕ ∈ V (3)

and δz is a solution of the dual-for-hessian/linearized adjoint equation

a′u(q, u)(ϕ, δz) = J ′′uu(q, u)(ϕ, δu)− a′′uu(q, u)(ϕ, δu, z)
J ′′uq(q, u)(ϕ, δq)− a′′uq(q, u)(ϕ, δq, z) for all ϕ ∈ V (4)

Adapt this to the concrete example and to the discrete setting. Also give the matrix vector
notation for equations (3) and (4).

2. Implement a function du = solveTangent(q, u, dq, args) that solves the discrete tan-
gent equation for a given direction δqh.

3. Implement a function dz = solveDFH(q, u, z, dq, du, args) that solves the discrete
linearized adjoint equation for a given direction δqh and the corresponding δuh.

4. Implement a function h = computeJpp(q, u, z, dq, du, dz, args) that computes a
Hessian product with the vector δq. The vector h should relate to the second derivative in
sense that

j′′(qh)(τqh, δqh) = h′tq.

Show that h is given by the formula h = αMqdq + B′dz. What would be an appropriate
expression for the Hessian vector product ∇2j(qh)δqh ∈ Vh?
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5. Verify the correctness of your implementation so far. The usual approach is a comparison of
the directional derivative with the central difference quotient,

j′′(q)(δq, δq) ≈ 1
ε2

[
j(q + εδq)− 2j(q) + j(q − εδq)

]
,

for a series of small ε > 0. You can do this by calling CheckHessian(q, dq, @solveState,
@solveAdjoint, @solveTangent, @solveDFH, @computeJ, @computeJpp, args).

6. Implement a local Newton method to compute the minimizer of the semilinear problem (1)
for σ = 1 and α ∈ {10−1, 10−3, 10−5}. Implement a function DampedNewton(solveState,
solveAdjoint, solveTangent, solveDFH, computeJ, computeJp, computeJpp, args),
based on the code for GradientDescent. Starting from some initial guess q0, build a sequence
of qk that converges to a local optimum using the update

j′′(qk)(δq, ϕ) = −j′(qk)(ϕ) for all ϕ ∈ Q (5)
qk+1 = qk + δq (6)

until the usual stopping criterion is satisfied.

• Write first a local function computeHessian(q, u, z, dq, solveTangent, solveDFH,
computeJpp, args) that computes an application of the Hessian (the vector h from
above) for a given direction dq. For this you should call solveTangent, solveDFH,
and computeJpp that you already implemented.

• Make an anonymous function H depending only on dq with the code

H = @(dq) computeHessian(q, u, z, dq, solveTangent, ...
solveDFH, computeJpp, args);

• The Newton step is then solved with the pcg method. Recall that this method requires
that the Hessian shall be symmetric, positive and definite. The first property is always
fulfilled. The last two properties are ensured when we are close to a local optimum.

• When the Hessian is positive definite, the Newton direction is also a descent direction.
In that case, it is possible to use a damping strategy such as the Armijo rule. This can
be used to globalize the Newton method.

7. Apply your Newton method also in the case σ = 0 (cf. Ex 1.1). Solve the same configuration
with the code from Ex 1.1 and compare the solutions (they should coincide). Compare the
runtime.

8. Consider again the Newton method applied to (1) in the case σ = 0. Show that for an
initial guess equal to q0 = 0, the method based on the cg-method (from sheet 1) and the
Newton-cg-method from this sheet perform essentially the same steps.
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Exercise 3.2 (Parameter estimation: the Gauss-Newton method): We consider again
the problem from Ex. 2.2 but we want to use second order information to speed up the optimization.

min
q∈R2,u∈H1(Ω)

J(u) = 1
2

∑
i=1,...,4

(Ciu− cd,i)2 (7a)

subject to
{
−∆u+ u+ eq1u3 = 0 in Ω,

∂nu+ eq2u = f on ∂Ω.
(7b)

To make a second order implementation for this example easier, we don’t compute the full Hessian,
but a sufficiently good approximation for it. We define

h(q)(δq, τq) := J ′′uu(u)(δu, τu)
[
≈ j′′(p)(δq, τq)

]
, (8)

where δu and τu are solutions of the tangent equation (3) at q and u = S(q) corresponding to
δq and τq. (If the functional J would depend directly on q, we would also include the partial
derivatives with respect to q. However, we neglect the term J ′u(u)(δτu) containing the derivative
of δu with respect to τq.)

Instead of the full Hessian, we will use h(q) to implement a quasi Newton strategy:

• Show that h(q)(·, ·) is a positive semidefinite bilinear form in the case of problem (7).

Note, that this would not be true necessarily for the second derivative j′′(p)(·, ·).

• Show that h(q) can be evaluated by

h(q)(δq, τq) = −a′q(q, u)(τq, δẑ), (9)

where δẑ is a solution of the modified linearized adjoint equation

a′u(u)(ϕ, δẑ) = J ′′uu(u)(ϕ, δu), (10)

where u is the state solution corresponding to q and δu is the tangent solution (3) at q and
u = S(q) corresponding to δq.

• Implement solveTangent for problem (7).

• Implement dz = solveModifiedDFH(q, u, z, dq, du, args) for problem (7), which
solves equation (10) in the discrete case.

• Implement h = computeModifiedJpp(q, u, z, dq, du, dz, args) for problem (7), which
computes the vector

h =
(
h(q)(δq, e1), h(q)(δq, e2)

)
• In this case, you can not verify correctness of the implementation with CheckHessian.
However, you can check that your implementation produces a symmetric, positive definite
matrix. Therefore, assemble the full matrix

H =
(
h(q)(ej , ei)

)
ij
.

by using solveTangent, solveModifiedDFH, and computeModifiedJpp twice, and check
numerically the symmetry and the sign of the eigenvalues (using eig).
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• Now, you can use the function DampedNewton from before to solve the problem. Since the
matrix H is positive semidefinite, the use of conjugate gradients and a globalization strategy
based on the (quasi-)Newton direction is justified.

For this example, the globalization strategy (requiring objective functional descent) is actually
needed.

• Compare the runtime to the gradient method from Ex 2.2.

• Bonus: For this example, we only have a small amount of parameters (namely two).
Therefore it is also possible, to assemble the full matrix H ∈ R2×2 directly with formula (8)
and the two tangent solutions corresponding to δq = e1,2.

Implement this method. Therefore you have to implement a version of DampedNewton that
works on the full Hessian.

• Bonus2: Show that the approximation (8) is justified in points u = S(q) where the residual
Ciu− cd,i is small. (It is exact for Ciu− cd,i = 0).

How does this justify the approximation of the Hessian?

How would you have to modify the algorithm in the case that the residual is not small in
the optimum (this is typically the case, if there are a large number of measurements)?
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