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Abstract. In this paper we develop a priori error analysis for Galerkin finite element discretiza-
tions of optimal control problems governed by linear parabolic equations. The space discretization
of the state variable is done using usual conforming finite elements, whereas the time discretization
is based on discontinuous Galerkin methods. For different types of control discretizations we pro-
vide error estimates of optimal order with respect to both space and time discretization parameters.
The paper is divided into two parts. In the first part we develop some stability and error estimates
for space-time discretization of the state equation and provide error estimates for optimal control
problems without control constraints. In the second part of the paper, the techniques and results of
the first part are used to develop a priori error analysis for optimal control problems with pointwise
inequality constraints on the control variable.
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1. Introduction. In this paper we develop a priori error analysis for space-time
finite element discretizations of parabolic optimization problems. We consider the
following linear-quadratic optimal control problem for the state variable u and the
control variable q:

(1.1a) Minimize J(q, u) =
1

2

∫ T

0

∫
Ω

(u(t, x) − û(t, x))2 dx dt +
α

2

∫ T

0

∫
Ω

q(t, x)2 dx dt

subject to

(1.1b)
∂tu− Δu = f + q in (0, T ) × Ω,

u(0) = u0 in Ω,

combined with either homogeneous Dirichlet or homogeneous Neumann boundary
conditions on (0, T )×∂Ω. A precise formulation of this problem including a functional
analytic setting is given in the next section.

While the a priori error analysis for finite element discretization of optimal control
problems governed by elliptic equations is discussed in many publications (see, e.g.,
[12, 15, 1, 16, 22, 4]), there are only a few published results on this topic for parabolic
problems; see [20, 28, 17, 19, 24].
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In this paper, we will use discontinuous finite element methods for time discretiza-
tion of the state equation (1.1b), as proposed, e.g., in [7, 10]. The spatial discretization
will be based on usual H1-conforming finite elements. In [2] this type of discretiza-
tion is shown to allow for a natural translation of the optimality conditions from the
continuous to the discrete level. This gives rise to exact computation of the deriva-
tives required in the optimization algorithms on the discrete level. In [21] a posteriori
error estimates for this type of discretization are derived and an adaptive algorithm
is developed.

Throughout, we will use a general discretization parameter σ consisting of three
discretization parameters σ = (k, h, d), where k corresponds to the time discretiza-
tion of the state variable, h to the space discretization of the state variable, and d
to the discretization of the control variable q, respectively. The space and time dis-
cretizations of the control variable may differ from the discretizations of the state.
Therefore, the discretization parameter d consists of the discretization parameters kd
and hd for the time and space discretizations of the control variable. In this paper we
will derive a priori error estimates of optimal order with respect to all discretization
parameters, where the influences of different parts of the discretization are clearly
separated. Moreover, the temporal and spatial regularity properties of the solution
to the continuous problem (1.1) are separated as well.

For the discretization error between the solution of the continuous optimization
problem (q̄, ū) and the solution of the discretized problem (q̄σ, ūσ), we will prove error
estimates of the following structure:

(1.2) ‖q̄− q̄σ‖L2((0,T )×Ω) ≤ C1(ū, z̄) k
r+1+C2(ū, z̄)h

s+1+C3(q̄) k
rd+1
d +C4(q̄)h

sd+1
d ,

where r, rd are the highest degrees of the polynomials in the time discretization of
the state and the control variable, respectively, and s, sd are the highest degree of the
polynomials in the space discretization of the control and the state variable. The con-
stants C1(ū, z̄) and C2(ū, z̄) depend on the temporal and the spatial regularity of the
optimal state ū and the corresponding adjoint state z̄, respectively; cf. Theorem 6.1.
The temporal and spatial regularity of the optimal control q̄ determines the constants
C3(q̄) and C4(q̄), respectively.

In [19] a similar result is proved for the case r = 0, s = 1, and under the as-
sumption k ≈ h2. We would like to emphasize that the discretization parameters
k, h, kd, hd in estimate (1.2) can be chosen independently of each other.

The purpose of this paper is twofold. The first goal is to derive a priori error
estimates for optimal control problem (1.1) of the above structure. The second goal is
to provide techniques which will be used in the second part of the paper for derivation
of a priori error estimates for problems involving pointwise inequality constraints on
the control variable.

The paper is organized as follows. In the next section we recall the function
analytic setting and optimality conditions for the optimal control problem under con-
sideration. In section 3 the space-time finite element discretization is presented. Based
on stability estimates developed in section 4, we provide a priori error analysis for the
state equation in section 5. The main result on the error analysis for the considered
optimal control problem is given in section 6. In this section error estimates for the
error in the control, state, and adjoint variables are developed. In the last section we
present a numerical example illustrating our results.

2. Optimization. In this section we briefly discuss the precise formulation of the
optimization problem under consideration. Furthermore, we recall theoretical results



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1152 DOMINIK MEIDNER AND BORIS VEXLER

on existence, uniqueness, and regularity of optimal solutions as well as optimality
conditions.

To set up a weak formulation of the state equation (1.1b), we introduce the
following notation: For a convex polygonal domain Ω ⊂ R

n, n ∈ { 2, 3 }, we denote V
to be either H1(Ω) or H1

0 (Ω) depending on the prescribed type of boundary conditions
(homogeneous Neumann or homogeneous Dirichlet). Together with H = L2(Ω), the
Hilbert space V and its dual V ∗ build a Gelfand triple V ↪→ H ↪→ V ∗. Here and in
what follows, we employ the usual notion for Lebesgue and Sobolev spaces.

For a time interval I = (0, T ) we introduce the state space

X :=
{
v
∣∣ v ∈ L2(I, V ) and ∂tv ∈ L2(I, V ∗)

}
and the control space

Q = L2(I, L2(Ω)).

In addition, we use the following notation for the inner products and norms on L2(Ω)
and L2(I, L2(Ω)):

(v, w) := (v, w)L2(Ω), (v, w)I := (v, w)L2(I,L2(Ω)),

‖v‖ := ‖v‖L2(Ω), ‖v‖I := ‖v‖L2(I,L2(Ω)).

In this setting, a standard weak formulation of the state equation (1.1b) for given
control q ∈ Q, f ∈ L2(I,H), and u0 ∈ V reads as follows: Find a state u ∈ X
satisfying

(2.1)
(∂tu, ϕ)I + (∇u,∇ϕ)I = (f + q, ϕ)I ∀ϕ ∈ X,

u(0) = u0.

For simplicity of notation, we skip here and throughout the paper the dependence of
the solution variable on x and t.

For this formulation of the state equation, we recall the following result on exis-
tence and regularity.

Proposition 2.1. For fixed control q ∈ Q, f ∈ L2(I,H), and u0 ∈ V there
exists a unique solution u ∈ X of problem (2.1). Moreover, the solution exhibits the
improved regularity

u ∈ L2(I,H2(Ω) ∩ V ) ∩H1(I, L2(Ω)) ↪→ C(Ī , V ).

It holds the stability estimate

‖∂tu‖I + ‖∇2u‖I ≤ C
{
‖f + q‖I + ‖∇u0‖

}
.

Proof. The proof of existence and uniqueness is given, e.g., in [18] and [29]. The
improved regularity relies on the fact that Ω is polygonal and convex and is proved,
e.g., in [11]. The embedding of L2(I,H2(Ω) ∩ V ) ∩H1(I, L2(Ω)) into C(Ī , V ) can be
found, for instance, in [6].

The weak formulation of the optimal control problem (1.1) is given as follows:

(2.2) Minimize J(q, u) :=
1

2
‖u− û‖2

I +
α

2
‖q‖2

I subject to (2.1) and (q, u) ∈ Q×X,

where û ∈ L2(I,H) is a given desired state and α > 0 is the regularization parameter.
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Proposition 2.2. For given f, û ∈ L2(I,H), u0 ∈ V , and α > 0, the optimal
control problem (2.2) admits a unique solution (q̄, ū) ∈ Q×X. The optimal control q̄
possesses the regularity

q̄ ∈ L2(I,H2(Ω)) ∩H1(I, L2(Ω)).

Proof. For existence and uniqueness we refer to [18]. First order necessary op-
timality conditions and Proposition 2.1 imply the stated regularity of the optimal
control.

The existence result for the state equation in Proposition 2.1 ensures the existence
of a control-to-state mapping q �→ u = u(q) defined through (2.1). By means of this
mapping we introduce the reduced cost functional j : Q → R:

j(q) := J(q, u(q)).

The optimal control problem (2.2) can then be equivalently reformulated as follows:

(2.3) Minimize j(q) subject to q ∈ Q.

The first order necessary optimality condition for (2.3) reads as

(2.4) j′(q̄)(δq) = 0 ∀δq ∈ Q.

Due to the linear-quadratic structure of the optimal control problem this condition is
also sufficient for optimality.

Utilizing the adjoint state equation for z = z(q) ∈ X given by

(2.5)
−(ϕ, ∂tz)I + (∇ϕ,∇z)I = (ϕ, u(q) − û)I ∀ϕ ∈ X,

z(T ) = 0,

the first derivative of the reduced cost functional can be expressed as

(2.6) j′(q)(δq) = (αq + z(q), δq)I .

3. Discretization. In this section we describe the space-time finite element dis-
cretization of the optimal control problem (2.2).

3.1. Semidiscretization in time. At first, we present the semidiscretization
in time of the state equation by discontinuous Galerkin methods. We consider a
partitioning of the time interval Ī = [0, T ] as

(3.1) Ī = {0} ∪ I1 ∪ I2 ∪ · · · ∪ IM

with subintervals Im = (tm−1, tm] of size km and time points

0 = t0 < t1 < · · · < tM−1 < tM = T.

We define the discretization parameter k as a piecewise constant function by setting
k
∣∣
Im

= km for m = 1, 2, . . . ,M . Moreover, we denote by k the maximal size of the
time steps, i.e., k = max km.

The semidiscrete trial and test space is given as

Xr
k =

{
vk ∈ L2(I, V )

∣∣∣vk∣∣Im ∈ Pr(Im, V ), m = 1, 2, . . . ,M
}
.
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1154 DOMINIK MEIDNER AND BORIS VEXLER

Here, Pr(Im, V ) denotes the space of polynomials up to order r defined on Im with
values in V . On Xr

k we use the notation

(v, w)Im := (v, w)L2(Im,L2(Ω)) and ‖v‖Im := ‖v‖L2(Im,L2(Ω)).

To define the discontinuous Galerkin (dG(r)) approximation using the space Xr
k

we employ the following definitions for functions vk ∈ Xr
k :

v+
k,m := lim

t→0+
vk(tm + t), v−k,m := lim

t→0+
vk(tm − t) = vk(tm), [vk]m := v+

k,m − v−k,m

and define the bilinear form B(·, ·) for uk, ϕ ∈ Xr
k by

(3.2) B(uk, ϕ) :=

M∑
m=1

(∂tuk, ϕ)Im + (∇uk,∇ϕ)I +

M∑
m=2

([uk]m−1, ϕ
+
m−1) + (u+

k,0, ϕ
+
0 ).

Then, the dG(r) semidiscretization of the state equation (2.1) for a given control
q ∈ Q reads as follows: Find a state uk = uk(q) ∈ Xr

k such that

(3.3) B(uk, ϕ) = (f + q, ϕ)I + (u0, ϕ
+
0 ) ∀ϕ ∈ Xr

k .

The existence and uniqueness of solutions to (3.3) can be shown by using Fourier
analysis; see [27] for details.

Remark 3.1. Using a density argument, it is possible to show that the exact
solution u = u(q) ∈ X also satisfies the identity

B(u, ϕ) = (f + q, ϕ)I + (u0, ϕ
+
0 ) ∀ϕ ∈ Xr

k .

Thus, we have here the property of Galerkin orthogonality

B(u− uk, ϕ) = 0 ∀ϕ ∈ Xr
k ,

although the dG(r) semidiscretization is a nonconforming Galerkin method (Xr
k 
⊂

X).
The semidiscrete optimization problem for the dG(r) time discretization has the

following form:

(3.4) Minimize J(qk, uk) subject to (3.3) and (qk, uk) ∈ Q×Xr
k .

Proposition 3.2. The semidiscrete optimal control problem (3.4) admits for
α > 0 a unique solution (q̄k, ūk) ∈ Q×Xr

k .
Proof. The proof is done by translating standard arguments from the proof in the

continuous case and by employing the continuity of the mapping q �→ uk(q) provided
by the stability estimates derived in the next section (cf. Theorem 4.3).

Note that the optimal control q̄k is searched for in the continuous space Q and
the subscript k indicates the usage of the semidiscretized state equation.

Similar to the continuous case, we introduce the semidiscrete reduced cost func-
tional jk : Q → R:

jk(q) := J(q, uk(q))

and reformulate the semidiscrete optimal control problem (3.4) as follows:

Minimize jk(qk) subject to qk ∈ Q.
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The first order necessary optimality condition reads as

(3.5) j′k(q̄k)(δq) = 0 ∀δq ∈ Q,

and the derivative of jk can be expressed as

(3.6) j′k(q)(δq) = (αq + zk(q), δq)I .

Here, zk = zk(q) ∈ Xr
k denotes the solution of the semidiscrete adjoint equation

(3.7) B(ϕ, zk) = (ϕ, uk(q) − û)I ∀ϕ ∈ Xr
k .

Note that by using integration by parts in time, the bilinear form B(·, ·) defined
by (3.2) can equivalently be expressed as

(3.8) B(ϕ, zk) = −
M∑

m=1

(ϕ, ∂tzk)Im + (∇ϕ,∇zk)I −
M−1∑
m=1

(ϕ−
m, [zk]m) + (ϕ−

M , z−k,M ).

3.2. Discretization in space. To define the finite element discretization in
space, we consider two or three dimensional shape-regular meshes; see, e.g., [5].
A mesh consists of quadrilateral or hexahedral cells K, which constitute a non-
overlapping cover of the computational domain Ω. The corresponding mesh is denoted
by Th = {K}, where we define the discretization parameter h as a cellwise constant
function by setting h

∣∣
K

= hK with the diameter hK of the cell K. We use the symbol
h also for the maximal cell size, i.e., h = maxhK .

On the mesh Th we construct a conforming finite element space Vh ⊂ V in a
standard way:

V s
h =

{
v ∈ V

∣∣v∣∣
K

∈ Qs(K) for K ∈ Th
}
.

Here, Qs(K) consists of shape functions obtained via (bi-/tri-)linear transformations

of polynomials in Q̂s(K̂) defined on the reference cell K̂ = (0, 1)n, where

Q̂s(K̂) = span

⎧⎨⎩
n∏

j=1

x
αj

j

∣∣∣∣∣αj ∈ N0, αj ≤ s

⎫⎬⎭ .

Remark 3.3. The definition of V s
h can be extended to the case of triangular

meshes in the obvious way.
To obtain the fully discretized versions of the time discretized state equation (3.3),

we utilize the space-time finite element space

Xr,s
k,h =

{
vkh ∈ L2(I, V s

h )
∣∣∣vkh∣∣Im ∈ Pr(Im, V s

h )
}
⊂ Xr

k .

Remark 3.4. Here, the spatial mesh and, therefore, also the space V s
h is fixed for

all time intervals. We refer to [25] for a discussion of treatment of different meshes
T m
h for each of the subintervals Im.

The so-called cG(s)dG(r) discretization of the state equation for given control
q ∈ Q has the following form: Find a state ukh = ukh(q) ∈ Xr,s

k,h such that

(3.9) B(ukh, ϕ) = (f + q, ϕ)I + (u0, ϕ
+
0 ) ∀ϕ ∈ Xr,s

k,h.
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Remark 3.5. The notation cG(s)dG(r) is taken from [7] and describes a method
with conforming (continuous) discretization in space of order s and discontinuous
discretization in time of order r.

Then, the corresponding optimal control problem is given as follows:

(3.10) Minimize J(qkh, ukh) subject to (3.9) and (qkh, ukh) ∈ Q×Xr,s
k,h,

and by means of the discrete reduced cost functional jkh : Q → R,

jkh(q) := J(q, ukh(q)),

it can be reformulated as follows:

Minimize jkh(qkh) subject to qkh ∈ Q.

The uniquely determined optimal solution of (3.10) is denoted by (q̄kh, ūkh) ∈ Q ×
Xr,s

k,h.
The optimal control q̄kh ∈ Q fulfills the first order optimality condition

(3.11) j′kh(q̄kh)(δq) = 0 ∀δq ∈ Q,

where j′kh(q)(δq) is given by

(3.12) j′kh(q)(δq) = (αq + zkh(q), δq)I

with the discrete adjoint solution zkh = zkh(q) ∈ Xr,s
k,h of

(3.13) B(ϕ, zkh) = (ϕ, ukh(q) − û)I ∀ϕ ∈ Xr,s
k,h.

3.3. Discretization of the controls. To obtain the fully discrete optimal con-
trol problem we restrict the control space Q to a finite dimensional subspace Qd ⊂ Q.
The optimal control problem on this level of discretization is given as follows:

(3.14) Minimize J(qσ, uσ) subject to (3.9) and (qσ, uσ) ∈ Qd ×Xr,s
k,h .

The unique optimal solution of (3.14) is denoted by (q̄σ, ūσ) ∈ Qd × Xr,s
k,h, where

the subscript σ collects the discretization parameters k, h, and d. The optimality
condition is given using the discrete reduced cost functional jkh introduced in the
previous section by

(3.15) j′kh(q̄σ)(δq) = 0 ∀δq ∈ Qd.

Most of our results presented below hold true independently of the choice of the
control discretization; see Theorem 6.1. However, we present here some possibilities
for construction of the discrete control space Qd, which will play a role in the discussion
of the error in the state and adjoint variables (see section 6.2) and which will be
employed for the numerical example in section 7.

For the construction of Qd it is possible to use spatial and temporal meshes, which
are different from those employed for the discretization of the state variable. However,
for simplicity of notation we will use the same time-partitioning (3.1). Using a spatial
mesh Thd

we consider two corresponding finite element spaces:

V sd
hd

=
{
v ∈ C(Ω̄)

∣∣v∣∣
K

∈ Qsd(K) for K ∈ Thd

}
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and

Ṽ sd
hd

=
{
v ∈ L2(Ω)

∣∣v∣∣
K

∈ Qsd(K) for K ∈ Thd

}
.

The space V sd
hd

consists of continuous cellwise polynomial functions of order sd, whereas

the functions in the space Ṽ sd
hd

are discontinuous. Using these spaces we define two
possibilities for the choice of Qd.

The first possibility is similar to the construction of the state space Xr,s
k,h, consist-

ing of functions which are continuous in space and discontinuous in time, and results
in the following definition:

Qd =
{
vkh ∈ L2(I, V sd

hd
)
∣∣∣vkh∣∣Im ∈ Prd(Im, V sd

hd
)
}
.

We will refer to this control discretization as cG(sd)dG(rd). If the control mesh Thd

coincides with the state mesh Th and one chooses the same order of polynomials
(r = rd, s = sd), then the state space Xr,s

k,h coincides with the control space Qd in case

of homogeneous Neumann boundary conditions and is a subspace of it, i.e., Xr,s
k,h ⊂ Qd

in the presence of homogeneous Dirichlet boundary conditions. In this case one can
show (cf. the discussion in section 6) that q̄kh = q̄σ. This means that a complete
discretization of the optimal control problem is achieved already after discretization
of the state equation; cf. [16].

For the second possibility we employ the space Ṽ sd
hd

of discontinuous cellwise
polynomials and obtain the following definition:

Qd =
{
vkh ∈ L2(I, Ṽ sd

hd
)
∣∣∣vkh∣∣Im ∈ Prd(Im, Ṽ sd

hd
)
}
.

We will refer to this control discretization as dG(sd)dG(rd). The special choice sd = 0
leads to cellwise constant discretization in space.

4. Stability estimates for the state and adjoint equations. The first step
in proving the desired a priori estimate is to prove stability estimates for the solution
of the semidiscrete (3.3) and the fully discretized (3.9) state equation. Throughout
this section we discuss the uncontrolled situation and set therefore q = 0.

In the following theorem we provide a stability estimate for semidiscretization in
time, which has a structure similar to the estimate on the continuous level given in
Proposition 2.1. A comparable estimate is shown in [8, 9] for the case f = 0.

Theorem 4.1. For the solution uk ∈ Xr
k of the dG(r) semidiscretized state

equation (3.3) with right-hand side f ∈ L2(I,H), initial condition u0 ∈ V , and q = 0,
the stability estimate

M∑
m=1

‖∂tuk‖2
Im + ‖Δuk‖2

I +

M∑
m=1

k−1
m ‖[uk]m−1‖2 ≤ C

{
‖f‖2

I + ‖∇u0‖2
}

holds. The constant C depends only on the polynomial degree r and the domain Ω.
The jump term [uk]0 at t = 0 is defined as u+

k,0 − u0.

Proof. By means of the definition [uk]0 = u+
k,0 −u0, the solution uk ∈ Xr

k of (3.3)
fulfills for all ϕ ∈ Pr(Im, V ) the following system of equations:

(4.1) (∂tuk, ϕ)Im + (∇uk,∇ϕ)Im + ([uk]m−1, ϕ
+
m−1) = (f, ϕ)Im , m = 1, 2, . . . ,M.

The proof of the desired estimate consist of three steps—one for each term of the
left-hand side of (4.1). The steps are based on consecutively testing with ϕ = −Δuk,
ϕ = (t− tm−1)∂tuk, and ϕ = [uk]m−1.
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Step (i). At first, we want to choose ϕ = −Δuk. For applying integration by parts
in space to (4.1), it is necessary to prove Δuk

∣∣
Im

∈ Pr(Im, H). This assertion

follows immediately from applying elliptic regularity theory (cf. [11]) to the
transformed time stepping equation

(∇uk,∇ϕ)Im = (f − ∂tuk, ϕ)Im − ([uk]m−1, ϕ
+
m−1).

The fact that uk

∣∣
Im

is polynomial in time with values in V ⊆ H implies that

the right-hand side is in H for almost all t ∈ Im. Thus, Δuk

∣∣
Im

is also in H

for almost all t ∈ Im, and since uk

∣∣
Im

is polynomial with respect to time, this

yields Δuk

∣∣
Im

∈ Pr(Im, H).

Consequently, it is feasible to integrate (4.1) by parts in space to obtain the
formulation

(4.2)
(∂tuk, ϕ)Im − (Δuk, ϕ)Im + ([uk]m−1, ϕ

+
m−1) = (f, ϕ)Im , m = 1, 2, . . . ,M.

The arising boundary terms vanish for both homogeneous Neumann and ho-
mogeneous Dirichlet boundary conditions.
Since there are no spatial derivatives on the test function ϕ anymore, formu-
lation (4.2) holds not only for all ϕ ∈ Pr(Im, V ) but by the density of V in
H also for all ϕ ∈ Pr(Im, H). Hence, we may choose ϕ = −Δuk as a test
function and get, by applying integration by parts in space a second time,

(∂t∇uk,∇uk)Im + (Δuk,Δuk)Im + ([∇uk]m−1,∇u+
k,m−1) = (f,−Δuk)Im .

Again, the arising boundary terms vanish due to the prescribed homogeneous
boundary conditions of Neumann or Dirichlet type.
By means of the identities

(∂tv, v)Im =
1

2
‖v−m‖2 − 1

2
‖v+

m−1‖2,(4.3a)

([v]m−1, v
+
m−1) =

1

2
‖v+

m−1‖2 +
1

2
‖[v]m−1‖2 − 1

2
‖v−m−1‖2,(4.3b)

we achieve

1

2
‖∇u−

k,m‖2 +
1

2
‖[∇uk]m−1‖2 − 1

2
‖∇u−

k,m−1‖2 + ‖Δuk‖2
Im = (f,−Δuk)Im .

Summation of the equations for m = 1, 2, . . . ,M leads to

1

2
‖∇u−

k,M‖2 +
1

2

M∑
m=1

‖[∇uk]m−1‖2 + ‖Δuk‖2
I = (f,−Δuk)I +

1

2
‖∇u0‖2.

Using Young’s inequality for the right-hand side, we obtain the first interme-
diary result

(4.4) ‖Δuk‖2
I ≤ ‖f‖2

I + ‖∇u0‖2.
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Step (ii). To bound the time derivative ∂tuk, we will use the inverse estimate

(4.5) ‖vk‖2
Im ≤ Ck−1

m

∫
Im

(t− tm−1)‖vk‖2 dt,

which holds true for all vk ∈ Pr(Im, V ). To obtain this estimate one trans-
forms both sides of the inequality into the reference time interval [0, 1], uses
equivalence of norms for finite dimensional spaces, and transforms the in-
equality back into the real interval Im.
We choose ϕ = (t− tm−1)∂tuk and obtain, utilizing the fact that ϕ+

m−1 = 0,∫
Im

(t− tm−1)‖∂tuk‖2 dt =

∫
Im

(t− tm−1)(f + Δuk, ∂tuk) dt

≤
(∫

Im

(t− tm−1)‖f + Δuk‖2 dt

) 1
2
(∫

Im

(t− tm−1)‖∂tuk‖2 dt

) 1
2

.

The inverse estimate (4.5) yields, by means of Hölder’s inequality,

‖∂tuk‖2
Im ≤ Ck−1

m

∫
Im

(t− tm−1)‖f + Δuk‖2 dt ≤ C
{
‖f‖2

Im + ‖Δuk‖2
Im

}
.

Then, (4.4) implies the second intermediary result

(4.6)

M∑
m=1

‖∂tuk‖2
Im ≤ C

{
‖f‖2

I + ‖∇u0‖2
}
.

Step (iii). It remains to estimate the jump terms. To this end, we choose ϕ =
[uk]m−1 constant in time on Im and obtain

‖[uk]m−1‖2 = (f + Δuk − ∂tuk, [uk]m−1)Im

≤ km
2

‖f + Δuk − ∂tuk‖2
Im +

1

2km
‖[uk]m−1‖2

Im .

Since [uk]m−1 is constant in time, we have ‖[uk]m−1‖2
Im

= km‖[uk]m−1‖2.
This implies

k−1
m ‖[uk]m−1‖2 ≤ ‖f + Δuk − ∂tuk‖2

Im .

The results (4.4) and (4.6) yield the remaining estimate

M∑
m=1

k−1
m ‖[uk]m−1‖2 ≤ C

{
‖f‖2

I + ‖∇u0‖2
}
.

The result of the previous theorem will also be applied to dual (adjoint) equations.
Let g ∈ L2(I,H) be a given right-hand side and zT ∈ V a given terminal condition;
then the corresponding semidiscretized dual equation is given by

(4.7) B(ϕ, zk) = (ϕ, g)I + (ϕ−
M , zT ) ∀ϕ ∈ Xr

k .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1160 DOMINIK MEIDNER AND BORIS VEXLER

Note that the semidiscrete adjoint solution defined in (3.7) can be obtained by setting
g = uk(q) − û and zT = 0.

Corollary 4.2. For the solution zk ∈ Xr
k of the semidiscrete dual equation

(4.7) with right-hand side g ∈ L2(I,H) and terminal condition zT ∈ V , the estimate
from Theorem 4.1 reads as

M∑
m=1

‖∂tzk‖2
Im + ‖Δzk‖2

I +

M∑
m=1

k−1
m ‖[zk]m‖2 ≤ C

{
‖g‖2

I + ‖∇zT ‖2
}
.

Here, the jump term [zk]M at t = T is defined as zT − z−k,M .
Proof. Let zk ∈ Xr

k be the solution of (4.7). Then formula (3.8) implies that it
also fulfills for all ϕ ∈ Pr(Im, V ) the following system of equations:

−(ϕ, ∂tzk)Im + (∇ϕ,∇zk)Im − (ϕ−
m, [zk]m) = (g, ϕ)Im , m = 1, 2, . . . ,M.

Based on this representation, all steps of the proof of Theorem 4.1 can be repeated
similarly to obtain the stated result.

For proving a priori estimates for the control problem (2.2), we will additionally
need stability estimates for the L2(I,H)-norm of the solution ‖uk‖I and of its gradient
‖∇uk‖I , which are given in the following theorem.

Theorem 4.3. For the solution uk ∈ Xr
k of the dG(r) semidiscretized state

equation (3.3) with right-hand side f ∈ L2(I,H), initial condition u0 ∈ V , and q = 0,
the stability estimate

‖uk‖2
I + ‖∇uk‖2

I ≤ C
{
‖f‖2

I + ‖∇u0‖2 + ‖u0‖2
}

holds true with a constant C that depends only on the polynomial degree r, the domain
Ω, and the final time T .

Remark 4.4. In the case of homogeneous Dirichlet boundary conditions, the
estimate can be proved by means of Poincaré’s inequality with a constant independent
of T .

Proof. The proof is done using a duality argument: Let z̃ ∈ X be the solution of

−(ϕ, ∂tz̃)I + (∇ϕ,∇z̃)I = (ϕ, uk)I ∀ϕ ∈ X

together with the terminal condition z̃(T ) = z̃T = 0. Thus, due to Remark 3.1, which
applies similarly to dual or adjoint equations, z̃ also fulfills

B(ϕ, z̃) = (ϕ, uk)I ∀ϕ ∈ Xr
k .

By means of this equality, we write

‖uk‖2
I = B(uk, z̃)

=
M∑

m=1

(∂tuk, z̃)Im + (∇uk,∇z̃)I +

M∑
m=2

([uk]m−1, z̃(tm−1)) + (u+
k,0, z̃(0)).

Using the setting [uk]0 = u+
k,0 − u0 we obtain

‖uk‖2
I =

M∑
m=1

(∂tuk, z̃)Im + (∇uk,∇z̃)I +

M∑
m=1

([uk]m−1, z̃(tm−1)) + (u0, z̃(0)),
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from which we get, with integration by parts in space and Hölder’s inequality,

‖uk‖2
I ≤

(
M∑

m=1

‖∂tuk‖2
Im

) 1
2

‖z̃‖I + ‖Δuk‖I‖z̃‖I

+

(
M∑

m=1

k−1
m ‖[uk]m−1‖2

) 1
2
(

M∑
m=1

km‖z̃(tm−1)‖2

) 1
2

+ ‖u0‖‖z̃(0)‖.

The stability estimate for the continuous solution z̃ ∈ X

max
t∈Ī

‖z̃(t)‖ ≤ C‖uk‖I ,

which makes use of the continuity of the mapping uk �→ z̃ (cf. [18]) and the continuous
embedding of X into C(Ī , H), implies

‖uk‖I ≤ C
√
T

(
M∑

m=1

‖∂tuk‖2
Im

) 1
2

+ C
√
T‖Δuk‖I

+ C
√
T

(
M∑

m=2

k−1
m ‖[uk]m−1‖2

) 1
2

+ C‖u0‖,

from which the desired estimate for ‖uk‖2
I follows by application of Theorem 4.1.

To prove the estimate for ‖∇uk‖2
I , we proceed similarly to the proof of Theo-

rem 4.1 and test (4.1) with ϕ = uk. We obtain for m = 1, 2, . . . ,M

(∂tuk, uk)Im + (∇uk,∇uk)Im + ([uk]m−1, u
+
k,m−1) = (f, uk)Im .

The identities (4.3) lead to

1

2
‖u−

k,m‖2 +
1

2
‖[uk]m−1‖2 − 1

2
‖u−

k,m−1‖2 + ‖∇uk‖2
Im = (f, uk)Im .

After summing up these equations for m = 1, 2, . . . ,M and by application of Young’s
inequality, we have

‖∇uk‖2
I ≤ 1

2

{
‖f‖2

I + ‖uk‖2
I + ‖u0‖2

}
.

Insertion of the already proved estimate for ‖uk‖2
I completes the proof.

Corollary 4.5. For the solution zk ∈ Xr
k of the semidiscrete dual equation

(4.7) with right-hand side g ∈ L2(I,H) and terminal condition zT ∈ V , the estimate
from Theorem 4.3 reads as

‖zk‖2
I + ‖∇zk‖2

I ≤ C
{
‖g‖2

I + ‖∇zT ‖2 + ‖zT ‖2
}
.

Proof. The proof is done similarly to the proof of Theorem 4.3.
All the estimates proved in this section hold true also for the fully discrete

cG(s)dG(r) solutions ukh, zkh ∈ Xr,s
k,h almost without any changes. Only two dif-

ferences have to be regarded: We have to replace the continuous Laplacian Δ by a
discrete analogue Δh : V s

h → V s
h defined by

(Δhu, ϕ) = −(∇u,∇ϕ) ∀ϕ ∈ V s
h ,
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and the jump terms [ukh]0 and [zkh]M are given here by means of the spatial L2-
projection Πh : V → V s

h as

[ukh]0 = u+
kh,0 − Πhu0 and [zkh]M = ΠhzT − z−kh,M .

Here, zkh ∈ Xr,s
k,h is the solution of the fully discretized dual equation with given

right-hand side g ∈ L2(I,H) and terminal condition zT ∈ V given by

(4.8) B(ϕ, zkh) = (ϕ, g)I + (ϕ−
M , zT ) ∀ϕ ∈ Xr,s

k,h.

For convenience of the reader, we state here the estimates for the fully discrete
solutions.

Theorem 4.6. For the solution ukh ∈ Xr,s
k,h of the discrete state equation (3.9)

with right-hand side f ∈ L2(I,H), initial condition u0 ∈ V , and q = 0, the stability
estimate

M∑
m=1

‖∂tukh‖2
Im + ‖Δhukh‖2

I +

M∑
m=1

k−1
m ‖[ukh]m−1‖2 ≤ C

{
‖f‖2

I + ‖∇Πhu0‖2
}

holds. The constant C depends only on the polynomial degree r and the domain Ω.
The jump term [ukh]0 at t = 0 is defined as u+

kh,0 −Πhu0. Furthermore, the estimate

‖ukh‖2
I + ‖∇ukh‖2

I ≤ C
{
‖f‖2

I + ‖∇Πhu0‖2 + ‖Πhu0‖2
}

holds true with a constant C that depends only on the polynomial degree r, the domain
Ω, and the final time T .

Corollary 4.7. For the solution zkh ∈ Xr,s
k,h of the discrete dual equation (4.8)

with right-hand side g ∈ L2(I,H) and terminal condition zT ∈ V , the estimates from
Theorem 4.6 read as

M∑
m=1

‖∂tzkh‖2
Im + ‖Δhzkh‖2

I +

M∑
m=1

k−1
m ‖[zkh]m‖2 ≤ C

{
‖g‖2

I + ‖∇ΠhzT ‖2
}

and

‖zkh‖2
I + ‖∇zkh‖2

I ≤ C
{
‖g‖2

I + ‖∇ΠhzT ‖2 + ‖ΠhzT ‖2
}
.

Here, the jump term [zkh]M at t = T is defined as ΠhzT − z−kh,M .

5. Analysis of the discretization error for the state equation. The goal of
this section is to prove an a priori error estimate for the discretization error of the (un-
controlled) state equation. Due to the choice of the control space Q = L2(I, L2(Ω)),
we will need error estimates for the error in the state (and adjoint) variable with
respect to the norm of L2(I, L2(Ω)); cf. the discussion in section 6. Similar error
estimates with respect to the L∞(I, L2(Ω))-norm can be found in [8, 9], and with
respect to the L2(I,H1(Ω))-norm in [13].

Let u ∈ X be the solution of the state equation (2.1) for q = 0, uk ∈ Xr
k be the

solution of the corresponding semidiscretized equation (3.3), and ukh ∈ Xr,s
k,h be the

solution of the fully discretized state equation (3.9). To separate the influences of the
space and time discretizations, we split the total discretization error e := u−ukh into
its temporal part ek := u − uk and its spatial part eh := uk − ukh. The temporal
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discretization error will be estimated in the following subsection, and the spatial
discretization error is treated in section 5.2.

Throughout this section we will assume that the solutions u ∈ X and uk ∈ Xr
k

possess the regularity ∂r+1
t u ∈ L2(I, L2(Ω)) and ∇s+1uk ∈ L2(I, L2(Ω)). Note that

Proposition 2.1 and Theorem 4.1 ensure this assumption for s = 1 and r = 0 for
convex polygonal domains Ω. Better regularity results (r > 0, s > 1) usually require
stronger assumptions on the domain Ω and additional compatibility relations.

5.1. Analysis of the temporal discretization error. In this section, we will
prove the following error estimate for the temporal discretization error ek.

Theorem 5.1. For the error ek := u−uk between the continuous solution u ∈ X
of (2.1) and the dG(r) semidiscretized solution uk ∈ Xr

k of (3.3), we have the error
estimate

‖ek‖I ≤ Ckr+1‖∂r+1
t u‖I ,

where the constant C is independent of the size of the time steps k.
For clarity of presentation, we divide the proof of this theorem into several steps,

which are discussed in the following lemmas.
Before doing so, we define a semidiscrete projection πk : C(Ī , V ) → Xr

k for m =
1, 2, . . . ,M by πku

∣∣
Im

∈ Pr(Im, V ) and

(πku− u, ϕ)Im = 0 ∀ϕ ∈ Pr−1(Im, V ) for r > 0,(5.1a)

πku(t−m) = u(t−m).(5.1b)

In the case r = 0, πku is defined solely by condition (5.1b). The projection πk is
well-defined by these conditions; see, for instance, [27] or [26]. By Proposition 2.1 the
solution u of (2.1) belongs to C(Ī , V ), and therefore πk is applicable to the state u.

To shorten the notation in the following analysis, we introduce the abbreviations

ηk := u− πku and ξk := πku− uk

and split the error ek as

ek = ηk + ξk.

Lemma 5.2. For the projection error ηk defined above, the identity

B(ηk, ϕ) = (∇ηk,∇ϕ)I

holds for all ϕ ∈ Xr
k .

Proof. By means of (3.8), we have

B(ηk, ϕ) = −
M∑

m=1

(ηk, ∂tϕ)Im + (∇ηk,∇ϕ)I −
M−1∑
m=1

(η−k,m, [ϕ]m) + (η−k,M , ϕ−
k,M ).

The term (ηk, ∂tϕ)Im vanishes due to (5.1a), and η−k,m = 0 for all m due to (5.1b).
This completes the proof.

Lemma 5.3. The temporal discretization error ek = u − uk is bounded by the
projection error ηk with respect to the L2(I, L2(Ω))-norm, that is,

‖ek‖I ≤ C‖ηk‖I .
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Proof. We define z̃k ∈ Xr
k to be the solution of

B(ϕ, z̃k) = (ϕ, ek)I ∀ϕ ∈ Xr
k .

Thus, we obtain by Galerkin orthogonality the relation B(ξk + ηk, z̃k) = 0 (cf. Re-
mark 3.1) which implies

‖ek‖2
I = (ξk, ek)I + (ηk, ek)I = B(ξk, z̃k) + (ηk, ek)I = −B(ηk, z̃k) + (ηk, ek)I .

Using Lemma 5.2 and integration by parts in space, and the stability estimate from
Corollary 4.2, it follows that

−B(ηk, z̃k) = −(∇ηk,∇z̃k)I = (ηk,Δz̃k)I ≤ ‖ηk‖I‖Δz̃k‖I ≤ C‖ηk‖I‖ek‖I .

Note that the arising boundary terms vanish for both homogeneous Neumann and
homogeneous Dirichlet boundary conditions. This leads, by means of Cauchy’s in-
equality, to the desired assertion.

Lemma 5.4. For the projection error ηk = u− πku the following estimate holds:

‖ηk‖Im ≤ Ckr+1
m ‖∂r+1

t u‖Im .

Proof. Similarly to [27], the proof is done by standard arguments utilizing the
Bramble–Hilbert lemma from [3].

After these preparations, we are able to give the proof of Theorem 5.1.
Proof of Theorem 5.1. From the Lemmas 5.3 and 5.4 we directly obtain

‖ek‖2
I ≤ C‖ηk‖2

I = C

M∑
m=1

‖ηk‖2
Im ≤ C

M∑
m=1

k2r+2
m ‖∂r+1

t u‖2
Im ≤ Ck2r+2‖∂r+1

t u‖2
I ,

which implies the stated result.

5.2. Analysis of the spatial discretization error. In this section we give a
proof of the following result.

Theorem 5.5. For the error eh := uk − ukh between the dG(r) semidiscretized
solution uk ∈ Xr

k of (3.3) and the fully cG(s)dG(r) discretized solution ukh ∈ Xr,s
k,h

of (3.9), we have the error estimate

‖eh‖I ≤ Chs+1‖∇s+1uk‖I ,

where the constant C is independent of the mesh size h and the size of the time steps
k.

Similar to the previous subsection, the proof is divided into several steps which
are collected in the following lemmas.

We define the projection πh : Xr
k → Xr,s

k,h by means of the spatial L2-projection
Πh : V → V s

h pointwise in time as

(πhuk)(t) = Πhuk(t).

For the solutions of the semidiscrete and fully discretized state equations uk ∈ Xr
k

and ukh ∈ Xr,s
k,h, and for z̃k ∈ Xr

k being the solution of the dual equation (4.7) with
right-hand side g = eh and terminal condition z̃T = 0, we use the abbreviations

ηh := uk − πhuk, ξh := πhuk − ukh, and η∗h := z̃k − πhz̃k,
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and split the error eh as

eh = ηh + ξh.

Lemma 5.6. For the projection errors ηh and η∗h defined above, the identities

B(ηh, ϕ) = (∇ηh,∇ϕ)I and B(ϕ, η∗h) = (∇ϕ,∇η∗h)I

hold for all ϕ ∈ Xr,s
k,h.

Proof. As in the proof of Lemma 5.2 we obtain

B(ηh, ϕ) = −
M∑

m=1

(ηh, ∂tϕ)Im + (∇ηh,∇ϕ)I −
M−1∑
m=1

(η−h,m, [ϕ]m) + (η−h,M , ϕ−
M )

= (∇ηh,∇ϕ)I

by means of the definition of πh. The assertion for B(ϕ, η∗h) follows directly when
employing representation (3.2) instead of (3.8).

Lemma 5.7. For the error ξh and the projection error ηh, the estimate

‖∇ξh‖I ≤ ‖∇ηh‖I

holds.
Proof. As in [13], we have for all v ∈ Xr

k by (3.2) and (3.8)

B(v, v) =

M∑
m=1

(∂tv, v)Im + (∇v,∇v)I +

M−1∑
m=1

([v]m, v+
m) + (v+

0 , v+
0 ),

B(v, v) = −
M∑

m=1

(v, ∂tv)Im + (∇v,∇v)I +

M−1∑
m=1

(−v−m, [v]m) + (v−M , v−M ).

We arrive at

B(v, v) ≥ (∇v,∇v)I

by adding these two identities. Utilizing the Galerkin orthogonality of the space
discretization, we obtain

‖∇ξh‖2
I = (∇ξh,∇ξh)I ≤ B(ξh, ξh) = −B(ηh, ξh) = −(∇ηh,∇ξh)I ≤ ‖∇ηh‖I‖∇ξh‖I .

Division by ‖∇ξh‖I leads to the asserted result.
Lemma 5.8. For the projection errors ηh and η∗h we have the intermediary result

B(ηh, η
∗
h) ≤ ‖∇ηh‖I‖∇η∗h‖I + C‖ηh‖I‖eh‖I .

Proof. Since πhz̃k ∈ Xr,s
k,h, it holds by (3.8) and the definition of πh that

B(ηh, η
∗
h) = −

M∑
m=1

(ηh, ∂tz̃k)Im + (∇ηh,∇η∗h)I −
M−1∑
m=1

(η−h,m, [z̃k]m) + (η−h,M , z̃−k,M ).
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Using z̃T = 0, we subtract the term (η−h,M , z̃T ) and obtain by means of the definition

[z̃k]M = z̃T − z̃−k,M

(5.2) B(ηh, η
∗
h) = −

M∑
m=1

(ηh, ∂tz̃k)Im + (∇ηh,∇η∗h)I −
M∑

m=1

(η−h,m, [z̃k]m).

Now, we separately treat the three terms on the right-hand side above: For the term
containing spatial derivatives, we have immediately

(5.3) (∇ηh,∇η∗h)I ≤ ‖∇ηh‖I‖∇η∗h‖I .

For the term containing the time derivatives, we achieve by Cauchy’s inequality and
with the stability estimate from Corollary 4.2

(5.4) −
M∑

m=1

(ηh, ∂tz̃k)Im ≤ ‖ηh‖I

(
M∑

m=1

‖∂tz̃k‖2
Im

) 1
2

≤ C‖ηh‖I‖eh‖I .

For the jump terms, we obtain again by Cauchy’s inequality

−
M∑

m=1

(η−h,m, [z̃k]m) ≤
(

M∑
m=1

km‖η−h,m‖2

) 1
2
(

M∑
m=1

k−1
m ‖[z̃k]m‖2

) 1
2

.

Utilizing the inverse estimate (cf. [8])

km‖η−h,m‖2 ≤ C‖ηh‖2
Im ,

which holds true for polynomials in time, and the stability estimate from Corollary 4.2,
we finally obtain

(5.5) −
M∑

m=1

(η−h,m, [z̃k]m) ≤ C‖ηh‖I‖eh‖I .

We complete the proof by inserting the three estimates (5.3), (5.4), and (5.5) into
(5.2).

We are now prepared to give the proof of Theorem 5.5.
Proof of Theorem 5.5. The solution z̃k ∈ Xr

k defined above satisfies

B(ϕ, z̃k) = (ϕ, eh)I ∀ϕ ∈ Xr
k .

Due to Galerkin orthogonality, which is applicable for πhz̃k ∈ Xr,s
k,h, the identity

‖eh‖2
I = B(eh, z̃k) = B(eh, z̃k − πhz̃k) = B(ξh, η

∗
h) + B(ηh, η

∗
h)

is fulfilled. For the first term we obtain, using Lemma 5.6 and Lemma 5.7,

B(ξh, η
∗
h) = (∇ξh,∇η∗h)I ≤ ‖∇ξh‖I‖∇η∗h‖I ≤ ‖∇ηh‖I‖∇η∗h‖I .

This yields, together with Lemma 5.8,

(5.6) ‖eh‖2
I ≤ 2‖∇ηh‖I‖∇η∗h‖I + C‖ηh‖I‖eh‖I .
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Due to the definition of πh, well-known a priori estimates for the spatial L2-projection
Πh can be employed to directly obtain estimates for ηh and η∗h. We have

‖ηh‖I ≤ Chs+1‖∇s+1uk‖I , ‖∇ηh‖I ≤ Chs‖∇s+1uk‖I , ‖∇η∗h‖I ≤ Ch‖∇2z̃k‖I .

These estimates applied to (5.6) lead to

‖eh‖2
I ≤ Chs+1‖∇s+1uk‖I

{
‖∇2z̃k‖I + ‖eh‖I

}
.

Due to the fact that the domain Ω is polygonal and convex, elliptic regularity theory
yields

‖∇2zk‖I ≤ C‖Δzk‖I ,

and we obtain the stated result by the stability estimate from Corollary 4.2.

6. Error analysis for the optimal control problem. In this section, we prove
the main results of this article, namely, an estimate of the error between the solution
(q̄, ū) of the continuous optimal control problem (2.2) and the solution (q̄σ, ūσ) of the
discretized problem (3.14).

Throughout this section, we will indicate the dependence of the state and the
adjoint state on the specific control q ∈ Q by the notation introduced in section 2 and
section 3, that is, u(q), z(q) on the continuous level, uk(q), zk(q) on the semidiscrete
and ukh(q), zkh(q) on the discrete level.

6.1. Error in the control variable. In this section we analyze the error with
respect to the control variable and prove the following result.

Theorem 6.1. The error between the solution q̄ ∈ Q of the continuous optimiza-
tion problem (2.2) and the solution q̄σ ∈ Qd of the discrete optimization problem (3.14)
can be estimated as

‖q̄ − q̄σ‖I ≤ C

α
kr+1

{
‖∂r+1

t u(q̄)‖I + ‖∂r+1
t z(q̄)‖I

}
+

C

α
hs+1

{
‖∇s+1uk(q̄)‖I + ‖∇s+1zk(q̄)‖I

}
+
(
2 +

C

α

)
inf

pd∈Qd

‖q̂ − pd‖I ,

where q̂ ∈ Q can be chosen either as the continuous solution q̄ or as the solution q̄kh
of the purely state discretized problem (3.10). The constants C are independent of the
mesh size h, the size of the time steps k, and the choice of the discrete control space
Qd ⊂ Q.

We first discuss the infimum term appearing on the right-hand side of the error
estimate above. Thereby, we make use of the two possible formulations of this term
for q̂ = q̄ or q̂ = q̄kh: From the optimality conditions (3.11) for the optimal control
problem (3.10) obtained after the discretization of the state equation in space and
time, we get

(q̄kh, δq)I =
1

α
(zkh(q̄kh), δq)I ∀δq ∈ Q,

and therefore q̄kh = 1
αzkh(q̄kh) ∈ Xr,s

k,h ⊂ Q. Thus, if Qd is chosen such that Qd ⊃
Xr,s

k,h, the term

inf
pd∈Qd

‖q̄kh − pd‖I
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vanishes. In this case, the solution q̄σ of the fully discretized optimal control prob-
lem (3.14) coincides with the solution q̄kh; cf. [16]. Consequently, it is reasonable to
discretize the control at most as fine as the adjoint state. The same conclusion can
be drawn by inspection of the a posteriori error estimates developed in [21].

If the discrete control space Qd does not fulfill the condition Qd ⊃ Xr,s
k,h, it is

desirable to choose q̂ = q̄ in the above theorem to obtain an estimate for the infimum
term. For both choices of the space Qd described in section 3.3 we obtain the following
estimate using interpolation theory:

inf
pd∈Qd

‖q̄ − pd‖I ≤ Ckrd+1‖∂rd+1
t q̄‖I + Chsd+1

d ‖∇sd+1q̄‖I .

Here, hd is the discretization parameter corresponding to the spatial mesh employed
for the control discretization.

The proof of Theorem 6.1 makes use of the assertions of the following lemmas
and will be given at the end of this section.

Lemma 6.2. Let q ∈ Q be a given control. The error between the continuous
state u = u(q) ∈ X determined by (2.1) and the discrete state ukh = ukh(q) ∈ Xr,s

k,h

determined by (3.9) can be estimated as

‖u(q) − ukh(q)‖I ≤ Ckr+1‖∂r+1
t u(q)‖I + Chs+1‖∇s+1uk(q)‖I .

For the error between the continuous adjoint state z = z(q) ∈ X determined by (2.5)
and the discrete adjoint state zkh = zkh(q) ∈ Xr,s

k,h determined by (3.13), the following
estimate holds:

‖z(q) − zkh(q)‖I ≤ Ckr+1
{
‖∂r+1

t u(q)‖I + ‖∂r+1
t z(q)‖I

}
+ Chs+1

{
‖∇s+1uk(q)‖I + ‖∇s+1zk(q)‖I

}
.

Proof. The estimate for the error in terms of the state variable is immediately
obtained by Theorems 5.1 and 5.5 since for q ∈ Q the right-hand side f + q of the
state equation (2.1) is in L2(I,H) and thus fulfills the assumptions of Proposition 2.1.

For estimating the error in z, we introduce additionally the solutions z̃k ∈ Xr
k

and z̃kh ∈ Xr,s
k,h which solve

B(ϕ, z̃k) = (ϕ, u(q) − û)I ∀ϕ ∈ Xr
k and

B(ϕ, z̃kh) = (ϕ, uk(q) − û)I ∀ϕ ∈ Xr,s
k,h.

Since the adjoint solution z(q) ∈ X is determined by (2.5), we may apply Theorem 5.1
to obtain

‖z(q) − z̃k‖I ≤ Ckr+1‖∂r+1
t z(q)‖I .

Correspondingly, due to the definition of the semidiscrete adjoint solution zk(q) ∈ Xr
k

by (3.7), Theorem 5.5 yields the estimate

‖zk(q) − z̃kh‖I ≤ Chs+1‖∇s+1zk(q)‖I .

Using (3.7) for zk(q), we obtain that the difference z̃k − zk(q) solves

B(ϕ, z̃k − zk(q)) = (ϕ, u(q) − uk(q))I ∀ϕ ∈ Xr
k .
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Then, the stability estimate from Corollary 4.2 yields

‖z̃k − zk(q)‖I ≤ C‖u(q) − uk(q)‖I .

Similarly, using (3.13) for zkh(q), we obtain for the difference z̃kh−zkh(q) the identity

B(ϕ, z̃kh − zkh(q)) = (ϕ, uk(q) − ukh(q))I ∀ϕ ∈ Xr,s
k,h,

and the stability estimate from Corollary 4.7 implies

‖z̃kh − zkh(q)‖I ≤ C‖uk(q) − ukh(q)‖I .

Finally, the triangle inequality and the error estimates from Theorems 5.1 and 5.5 for
the error in the state variable lead to the proposed result.

Lemma 6.3. For given controls q, r ∈ Q, the difference between the derivatives
of the continuous reduced functional j and the discrete reduced functional jkh can be
estimated by

|j′(q)(r) − j′kh(q)(r)| ≤ ‖z(q) − zkh(q)‖I‖r‖I .

Proof. The representations (2.6) and (3.12) for j′ and j′kh, respectively, imply
directly the assertion

|j′(q)(r) − j′kh(q)(r)| = |(z(q) − zkh(q), r)I | ≤ ‖z(q) − zkh(q)‖I‖r‖I .

Lemma 6.4. The derivatives of the discrete reduced functional jkh are Lipschitz
continuous on Q. That is, for arbitrary p, q, r ∈ Q, the estimate

|j′kh(q)(r) − j′kh(p)(r)| ≤ (C + α)‖q − p‖I‖r‖I

holds true.
Proof. By means of (3.12), we have

|j′kh(q)(r) − j′kh(p)(r)| ≤ α|(q − p, r)I | + |(zkh(q) − zkh(p), r)I |

≤ α‖q − p‖I‖r‖I + ‖zkh(q) − zkh(p)‖I‖r‖I .

Since zkh(q) − zkh(p) solves

B(ϕ, zkh(q) − zkh(p)) = (ϕ, ukh(q) − ukh(p))I ∀ϕ ∈ Xr,s
k,h,

and ukh(q) − ukh(p) satisfies

B(ukh(q) − ukh(p), ϕ) = (q − p, ϕ)I ∀ϕ ∈ Xr,s
k,h,

the stability estimates for zkh from Corollary 4.7 and for ukh from Theorem 4.6 yield

‖zkh(q) − zkh(p)‖I ≤ C‖ukh(q) − ukh(p)‖I ≤ C‖q − p‖I ,

which implies the desired result.
With the aid of these preliminary results, we now prove Theorem 6.1.
Proof of Theorem 6.1. To obtain the asserted result, we split the error to be

estimated in two different ways:

‖q̄ − q̄σ‖I ≤ ‖q̄ − pd‖I + ‖pd − q̄σ‖I ,(6.1)

‖q̄ − q̄σ‖I ≤ ‖q̄ − q̄kh‖I + ‖q̄kh − pd‖I + ‖pd − q̄σ‖I .(6.2)
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Here, pd is an arbitrary element of Qd and q̄, q̄kh, and q̄σ are the optimal solutions
on the different levels of discretization.

Due to the linear-quadratic structure of the optimal control problem under con-
sideration, we have for all p, r ∈ Q,

j′′kh(p)(r, r) ≥ α‖r‖2
I ,

and j′′kh(p) does not depend on p. This implies, for arbitrary p, pd ∈ Qd,

α‖pd − q̄σ‖2
I ≤ j′′kh(p)(pd − q̄σ, pd − q̄σ) = j′kh(pd)(pd − q̄σ) − j′kh(q̄σ)(pd − q̄σ).

Since q̄, q̄kh, and q̄σ are the optimal solutions of the continuous, semidiscrete, and
discrete optimization problems, we have by (2.4), (3.11), and (3.15),

j′kh(q̄σ)(pd − q̄σ) = j′kh(q̄kh)(pd − q̄σ) = j′(q̄)(pd − q̄σ) = 0.

Using these identities, we obtain for the separation (6.1) (which we use to prove the
theorem in the case q̂ = q̄) the estimate

α‖pd − q̄σ‖2
I ≤ j′kh(pd)(pd − q̄σ) − j′(q̄)(pd − q̄σ)

= j′kh(pd)(pd − q̄σ) − j′kh(q̄)(pd − q̄σ) + j′kh(q̄)(pd − q̄σ) − j′(q̄)(pd − q̄σ).

By means of Lemmas 6.3 and 6.4, we achieve

α‖pd − q̄σ‖2
I ≤ (C + α)‖pd − q̄‖I‖pd − q̄σ‖I + ‖z(q̄) − zkh(q̄)‖I‖pd − q̄σ‖I .

Using (6.1) we get the estimate

(6.3) ‖q̄ − q̄σ‖I ≤ 1

α
‖z(q̄) − zkh(q̄)‖I +

(
2 +

C

α

)
‖q̄ − pd‖I .

To use separation (6.2) for proving the theorem in the case q̂ = q̄kh, we estimate
alternatively by means of Lemma 6.4,

α‖pd − q̄σ‖2
I ≤ j′kh(pd)(pd − q̄σ) − j′kh(q̄kh)(pd − q̄σ) ≤ (C + α)‖pd − q̄kh‖I‖pd − q̄σ‖I .

In the same manner as before, we can estimate ‖q̄ − q̄kh‖I by Lemma 6.3 as

α‖q̄ − q̄kh‖2
I ≤ j′′kh(p)(q̄ − q̄kh, q̄ − q̄kh)

= j′kh(q̄)(q̄ − q̄kh) − j′kh(q̄kh)(q̄ − q̄kh)

= j′kh(q̄)(q̄ − q̄kh) − j′(q̄)(q̄ − q̄kh)

≤ ‖z(q̄) − zkh(q̄)‖I‖q̄ − q̄kh‖I .

Then, the two latter estimates imply

(6.4) ‖q̄ − q̄σ‖I ≤ 1

α
‖z(q̄) − zkh(q̄)‖I +

(
2 +

C

α

)
‖q̄kh − pd‖I .

Finally, the inequalities (6.3) and (6.4) prove the assertion by means of the esti-
mate for ‖z(q̄) − zkh(q̄)‖I from Lemma 6.2.

To concretize the result of Theorem 6.1, we consider the following choice of dis-
cretizations: The state space is discretized by the cG(1)dG(0) method, that is, we
consider the case when r = 0 and s = 1. Using for simplicity the same triangulation
of the spatial domain (hd = h) and the same distribution of the time steps (kd = k)
as for the discretization of the state, we discuss the following two possibilities for the
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control discretization (cf. section 3.3):
1. cG(1)dG(0) discretization, i.e., cellwise (bi-/tri-)linear in space and piecewise

constant in time: In this case the infimum term in the estimate in Theorem 6.1
vanishes, since Qd ⊃ Xr,s

k,h; see the above discussion. Thus, Theorem 6.1
implies that the discretization error is of order

‖q̄ − q̄σ‖I = O(k + h2).

2. dG(0)dG(0) discretization, i.e., cellwise constant in space and piecewise con-
stant in time: In this case the infimum term of the error estimation from
Theorem 6.1 has to be taken into account, leading to the discretization error
of order

‖q̄ − q̄σ‖I = O(k + h).

Note that the regularity of the optimal solutions required for these estimates is en-
sured by Propositions 2.1 and 2.2 for the continuous solutions q, u, and z, and by
Theorem 4.1 and Corollary 4.2 for the time-discrete solutions uk and zk. A numerical
validation of these estimates will be given in section 7.

6.2. Error in the state and in the adjoint variable. In this subsection we
prove error estimates for the state and adjoint state variables. That is, we consider
the discretization errors

‖ū− ūσ‖I = ‖u(q̄) − ukh(q̄σ)‖I and ‖z̄ − z̄σ‖I = ‖z(q̄) − zkh(q̄σ)‖I .

By means of the stability estimates derived in section 4, one simply obtains the
following result.

Theorem 6.5. Let (q̄, ū) be the solution of the continuous optimal control prob-
lem (2.2) and z̄ = z(q̄) be the corresponding adjoint state. Let, moreover, (q̄σ, ūσ)
be the solution of the discrete optimal control problem (3.14) with the corresponding
discrete adjoint state z̄σ = zkh(q̄σ). Then, the following estimates hold:

(i) ‖ū− ūσ‖I ≤ ‖u(q̄) − ukh(q̄)‖I + C‖q̄ − q̄σ‖I ,

(ii) ‖z̄ − z̄σ‖I ≤ ‖z(q̄) − zkh(q̄)‖I + C‖q̄ − q̄σ‖I .

Proof. Using the fact that ū = u(q̄) and ūσ = ukh(q̄σ), we have

(6.5) ‖ū− ūσ‖I ≤ ‖u(q̄) − ukh(q̄)‖I + ‖ukh(q̄) − ukh(q̄σ)‖I .

By means of the stability result from Theorem 4.6, we obtain

‖ukh(q̄) − ukh(q̄σ)‖I ≤ C‖q̄ − q̄σ‖I .

This proves the first assertion. The second assertion follows in the same way utilizing
the stability of the adjoint state given by Corollary 4.7.

Employing the discretization of the control by cG(1)dG(0), the above theorem
leads to the optimal order of convergence using Lemma 6.2 and Theorem 6.1. That
is, we have

‖u(q̄) − ukh(q̄)‖I = O(k + h2), ‖z(q̄) − zkh(q̄)‖I = O(k + h2),

‖q̄ − q̄σ‖I = O(k + h2),
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and thus

‖ū− ūσ‖I = O(k + h2) and ‖z̄ − z̄σ‖I = O(k + h2).

However, in the case of dG(0)dG(0) discretization, this theorem does not lead to
the optimal order of convergence: In this case, we have indeed as before,

‖u(q̄) − ukh(q̄)‖I = O(k + h2) and ‖z(q̄) − zkh(q̄)‖I = O(k + h2)

since the discretization of the state space is unaffected by the discretization of the
controls, but we have only

‖q̄ − q̄σ‖I = O(k + h)

due to the first order discretization of the control space. This would lead to O(k+ h)
for the state and the adjoint variable.

Utilizing a more detailed analysis, we can prove also in this case the optimal order
of convergence O(k + h2) for the errors ‖ū− ūσ‖I and ‖z̄ − z̄σ‖I .

For both choices of the space Qd described in section 3.3 the following results
hold.

Theorem 6.6. Let (q̄, ū) be the solution of the continuous optimal control prob-
lem (2.2) and z̄ = z(q̄) be the corresponding adjoint state. Let, moreover, (q̄σ, ūσ)
be the solution of the discrete optimal control problem (3.14) with the corresponding
discrete adjoint state z̄σ = zkh(q̄σ). In addition we assume r = rd, i.e., the same
discretization of the state and control variable in time. Then, the following estimates
hold:

(i) ‖ū− ūσ‖I ≤ ‖u(q̄) − ukh(q̄)‖I + Chd

(
1 +

1

α

)
‖q̄ − πdq̄‖I +

C

α
‖z(q̄) − zkh(q̄)‖I ,

(ii) ‖z̄ − z̄σ‖I ≤ Chd

(
1 +

1

α

)
‖q̄ − πdq̄‖I + C

(
1 +

1

α

)
‖z(q̄) − zkh(q̄)‖I ,

where πd : Q → Qd is the space-time L2-projection on Qd.
Proof. For proving (i) we split the error ‖ū− ūσ‖I as follows:

(6.6) ‖ū− ūσ‖I ≤ ‖u(q̄)−ukh(q̄)‖I + ‖ukh(q̄)−ukh(πdq̄)‖I + ‖ukh(πdq̄)−ukh(q̄σ)‖I .

The second term on the right-hand side of (6.6) is estimated using the following
duality argument: Let z̃kh ∈ Xr,s

k,h be the solution of

B(ϕ, z̃kh) = (ϕ, ukh(q̄) − ukh(πdq̄))I ∀ϕ ∈ Xr,s
k,h.

By means of the discrete state equation (3.9) for ukh(q̄) and ukh(πdq̄), we obtain

‖ukh(q̄) − ukh(πdq̄)‖2
I = B(ukh(q̄) − ukh(πdq̄), z̃kh) = (q̄ − πdq̄, z̃kh)I .

Since πd is the L2-projection, we have

(6.7) ‖ukh(q̄) − ukh(πdq̄)‖2
I = (q̄ − πdq̄, z̃kh − πdz̃kh)I ≤ ‖q̄ − πdq̄‖I‖z̃kh − πdz̃kh‖I .

Using the fact that r = rd and that therefore the same time discretization is employed
for the control and state variable, the space-time L2-projection πd applied to z̃kh can
be expressed as spatial L2-projection Πhd

z̃kh.
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Applying an interpolation estimate and the stability estimate from Corollary 4.7
we obtain

‖z̃kh − πdz̃kh‖I = ‖z̃kh − Πhd
z̃kh‖I ≤ Chd‖∇z̃kh‖I ≤ Chd‖ukh(q̄) − ukh(πdq̄)‖I .

Plugging this estimate into (6.7) yields

(6.8) ‖ukh(q̄) − ukh(πdq̄)‖I ≤ Chd‖q̄ − πdq̄‖I .

For the third term in (6.6) we obtain, using Theorem 4.6,

‖ukh(πdq̄) − ukh(q̄σ)‖I ≤ C‖πdq̄ − q̄σ‖I .

For estimating the term ‖πdq̄ − q̄σ‖I we proceed as in the proof of Theorem 6.1 for
the term ‖pd − q̄σ‖I :

α‖πdq − qσ‖2
I ≤ j′kh(πdq)(πdq − qσ) − j′(q)(πdq − qσ).

Using representation (3.12) of j′kh and (2.6) of j′ we have

α‖πdq̄ − q̄σ‖2
I ≤ α(πdq̄ − q̄, πdq̄ − q̄σ)I + (zkh(πdq̄) − z(q̄), πdq̄ − q̄σ)I .

Since πdq̄− q̄σ ∈ Qd, the term (πdq̄− q̄, πdq̄− q̄σ)I vanishes, and due to Corollary 4.7,
we end up with

α‖πdq̄ − q̄σ‖I ≤ ‖zkh(πdq̄) − z(q̄)‖I

≤ ‖zkh(πdq̄) − zkh(q̄)‖I + ‖zkh(q̄) − z(q̄)‖I

≤ C‖ukh(πdq̄) − ukh(q̄)‖I + ‖zkh(q̄) − z(q̄)‖I ,

which implies, by using (6.8), the estimate

‖ukh(πdq̄) − ukh(q̄σ)‖I ≤ C

α
‖ukh(πdq̄) − ukh(q̄)‖I +

C

α
‖zkh(q̄) − z(q̄)‖I

≤ C

α
hd‖q̄ − πdq̄‖I +

C

α
‖zkh(q̄) − z(q̄)‖I .

(6.9)

Plugging (6.8) and (6.9) into (6.6) we complete the proof of (i). The assertion (ii)
follows using (6.8), (6.9), and the following estimate exploiting the stability result
from Corollary 4.7:

‖z̄ − z̄σ‖I

≤ ‖z(q̄) − zkh(q̄)‖I + ‖zkh(q̄) − zkh(πdq̄)‖I + ‖zkh(πdq̄) − zkh(q̄σ)‖I

≤ ‖z(q̄) − zkh(q̄)‖I + C‖ukh(q̄) − ukh(πdq̄)‖I + C‖ukh(πdq̄) − ukh(q̄σ)‖I .

For the case of dG(0)dG(0) discretization of the control space with hd = h and
kd = k this theorem leads to the improved (optimal) order of convergence

‖ū− ūσ‖I = O(k + h2) and ‖z̄ − z̄σ‖I = O(k + h2).
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7. Numerical results. In this section, we are going to validate the a priori
error estimates for the error in the control, state, and adjoint state numerically. To
this end, we consider the following concretion of the model problem (2.2) with known
analytical exact solution on Ω × I = (0, 1)2 × (0, 0.1) and homogeneous Dirichlet
boundary conditions. The right-hand side f, the desired state û, and the initial
condition u0 are given in terms of the eigenfunctions

wa(t, x1, x2) := exp(aπ2t) sin(πx1) sin(πx2), a ∈ R,

of the operator ±∂t − Δ as

f(t, x1, x2) := −π4wa(T, x1, x2),

û(t, x1, x2) :=
a2 − 5

2 + a
π2wa(t, x1, x2) + 2π2wa(T, x1, x2),

u0(x1, x2) :=
−1

2 + a
π2wa(0, x1, x2).

For this choice of data and with the regularization parameter α chosen as α = π−4,
the optimal solution triple (q̄, ū, z̄) of the optimal control problem (2.2) is given by

q̄(t, x1, x2) := −π4{wa(t, x1, x2) − wa(T, x1, x2)},

ū(t, x1, x2) :=
−1

2 + a
π2wa(t, x1, x2),

z̄(t, x1, x2) := wa(t, x1, x2) − wa(T, x1, x2).

We are going to validate the estimates developed in the previous section by sepa-
rating the discretization errors. That is, we consider at first the behavior of the error
for a sequence of discretizations with decreasing size of the time steps and a fixed
spatial triangulation with N = 1089 nodes. Second, we examine the behavior of the
error under refinement of the spatial triangulation for M = 2048 time steps.

The state discretization is chosen as cG(1)dG(0), i.e., r = 0, s = 1. For the control
discretization we use the same temporal and spatial meshes as for the state variable
and present the result for two choices of the discrete control space Qd: cG(1)dG(0)
and dG(0)dG(0). For the following computations, we choose the free parameter a to
be −

√
5. For this choice the right-hand side f and the desired state û do not depend

on time which avoids side effects introduced by numerical quadrature.
The optimal control problems are solved by the optimization library RoDoBo

[23] and the finite element toolkit Gascoigne [14] using a conjugate gradient method
applied to the reduced problem (3.14).

Figure 7.1(a) depicts the development of the error under refinement of the tem-
poral step size k. Up to the spatial discretization error it exhibits the proven con-
vergence order O(k) for both kinds of spatial discretization of the control space. For
piecewise constant control (dG(0)dG(0) discretization), the discretization error is al-
ready reached at 128 time steps, whereas in the case of bilinear control (cG(1)dG(0)
discretization), the number of time steps could be increased up to M = 4096 until
reaching the spatial accuracy.
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Fig. 7.1. Discretization error ‖q̄ − q̄σ‖I .
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Fig. 7.2. Discretization error ‖ū− ūσ‖I .
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(a) Refinement of the time steps for N =
1089 spatial nodes
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(b) Refinement of the spatial triangulation
for M = 2048 time steps

Fig. 7.3. Discretization error ‖z̄ − z̄σ‖I .

In Figure 7.1(b) the development of the error in the control variable under spa-
tial refinement is shown. The expected order O(h) for piecewise constant control
(dG(0)dG(0) discretization) and O(h2) for bilinear control (cG(1)dG(0) discretiza-
tion) is observed.

Figures 7.2 and 7.3 show the errors in the state and the adjoint variables, ‖ū−ūσ‖I
and ‖z̄− z̄σ‖I , for separate refinement of the time and space discretization. Thereby,
we observe convergence of order O(k+h2) regardless of the type of spatial discretiza-
tion used for the controls. This is consistent with the results proven in the previous
section.
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