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NUMERICAL SENSITIVITY ANALYSIS FOR THE QUANTITY OF
INTEREST IN PDE-CONSTRAINED OPTIMIZATION∗

ROLAND GRIESSE† AND BORIS VEXLER†

Abstract. In this paper, we consider the efficient computation of derivatives of a functional
(the quantity of interest) which depends on the solution of a PDE-constrained optimization problem
with inequality constraints and which may be different from the cost functional. The optimization
problem is subject to perturbations in the data. We derive conditions under with the quantity of
interest possesses first and second order derivatives with respect to the perturbation parameters. An
algorithm for the efficient evaluation of these derivatives is developed, with considerable savings over a
direct approach, especially in the case of high-dimensional parameter spaces. The computational cost
is shown to be small compared to that of the overall optimization algorithm. Numerical experiments
involving a parameter identification problem for Navier–Stokes flow and an optimal control problem
for a reaction-diffusion system are presented which demonstrate the efficiency of the method.
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1. Introduction. In this paper we consider PDE-constrained optimization prob-
lems with inequality constraints. The optimization problems are formulated in a gen-
eral setting including optimal control as well as parameter identification problems.
The problems are subject to perturbation in the data. We suppose we are given a
quantity of interest (output functional), which depends on both the state and the
control variables and which may be different from the cost functional used during the
optimization.

The quantity of interest is shown to possess first and, under tighter assumptions,
second order derivatives with respect to the perturbation parameters. In the presence
of control constraints, strict complementarity and compactness of certain derivatives
of the state equation are assumed; for second order derivatives, stability of the active
set is required in addition. The precise conditions are given in section 3. The main
contribution of this paper is to devise an efficient algorithm to evaluate these sensi-
tivity derivatives which offers considerable savings over a direct approach, especially
in the case of high-dimensional parameter spaces. We show that the derivatives of
the quantity of interest can be computed with little additional numerical effort in
comparison to the corresponding derivatives of the cost functional. Moreover, the
computational cost for the evaluation of the gradient of the quantity of interest is
independent of the dimension of the parameter space and low compared to that of
the overall optimization algorithm. The cost to evaluate the Hessian grows linearly
with the dimension of the parameter space. We refer to Table 3.1 for details.

The parametric derivatives of the quantity of interest offer a significant amount
of additional information on top of an optimal solution. The derivative information
can be used to assess the stability of an optimal solution, or to compute a Taylor

∗Received by the editors August 1, 2005; accepted for publication (in revised form) June 27, 2006;
published electronically January 8, 2007.

http://www.siam.org/journals/sisc/29-1/63727.html
†Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian

Academy of Sciences, Linz, Austria (roland.griesse@oeaw.ac.at, boris.vexler@oeaw.ac.at).

22



SENSITIVITY ANALYSIS FOR THE QUANTITY OF INTEREST 23

expansion which allows the fast prediction of the perturbed value of the quantity of
interest in a neighborhood of a reference parameter.

We note that a quantity of interest different from the cost functional is often
natural. For instance, an optimization problem in fluid flow may aim at minimizing
the drag of a given body, e.g., by adjusting the boundary conditions. The quantity
of interest, however, may be the lift coefficient of the optimal configuration. We also
mention the applicability of our results to bilevel optimization problems where the
outer variable is the “perturbation” parameter and the outer objective is the output
functional, whose derivatives are needed to employ efficient optimization algorithms.

The necessity to compute higher order derivatives may impose possible limitations
to the applicability of the methods presented in this paper. Second order derivatives
of the cost functional and the PDE constraint are required to evaluate the gradient
of the quantity of interest, and third order derivatives are required to evaluate the
Hessian.

Let us put our work into perspective. The existence of first and second order
sensitivity derivatives of the objective function (cost functional) in optimal control of
PDEs with control constraints has been proved in [7, 18]. Moreover, [8] addresses
the numerical computation of these derivatives. Recently, the computation of the
gradient of the quantity of interest in the absence of inequality constraints has been
discussed in [3].

Problem setting. We consider the PDE-constrained optimization problem in
the following abstract form: The state variable u in an appropriate Hilbert space V
with scalar product (·, ·)V is determined by a PDE (state equation) in weak form:

a(u, q, p)(φ) = f(φ) ∀φ ∈ V,(1.1)

where q denotes the control, or, more generally, design variable, in the Hilbert space
Q = L2(ω) with the standard scalar product (·, ·). Typically, ω is a subset of the
computational domain Ω or a subset of its boundary ∂Ω. In case of finite-dimensional
controls we set Q = R

n and identify this space with L2(ω), where ω = {1, 2, . . . , n} to
keep the notation consistent. The parameter p from a normed linear space P describes
the perturbations of the data.

For fixed p ∈ P, the semilinear form a(·, ·, p)(·) is defined on the Hilbert space
V × Q × V. Semilinear forms are written with two parentheses; the first one refers
to the nonlinear arguments, whereas the second one embraces all linear arguments.
The partial derivatives of the semilinear form a(·, ·, p)(·) are denoted by a′u(·, ·, p)(·, ·),
a′q(·, ·, p)(·, ·), etc. The linear functional f ∈ V ′ represents the right-hand side of
the state equation, where V ′ denotes the dual space of V. For the cost functional
(objective functional) we assume the form

J(u, p) +
α

2
‖q − q‖2

Q,(1.2)

which is typical in PDE-constrained optimization problems. Here, α > 0 is a regu-
larization parameter and q ∈ Q is a reference control. The functional J : V × P → R

is also subject to perturbation. It is possible to extend our analysis to more general
cost functionals than (1.2). In particular, only notational changes are necessary if J
contains linear terms in q, and if α and q also depend on the perturbation parame-
ter. However, full generality of the cost functional comes at the expense of additional
assumptions which would unnecessarily complicate the discussion.
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In order to cover additional control constraints we introduce a nonempty closed
convex subset Qad ⊂ Q by

Qad = {q ∈ Q | b−(x) ≤ q(x) ≤ b+(x) a.e. on ω},

with bounds b− ≤ b+ ∈ Q. In the case of finite-dimensional controls the inequality
b− ≤ q ≤ b+ is meant to hold componentwise.

The problem under consideration is to

minimize (1.2) over Qad × V(OP(p))

subject to the state equation (1.1)

for fixed p ∈ P. We assume that in a neighborhood of a reference parameter p0,
there exist functions u = U(p) and q = Q(p), which map the perturbation parameter
p to a local solution (u, q) of the problem (OP(p)). In section 3, we give sufficient
conditions ensuring the existence and differentiability of these functions. Our results
complement previous findings in [7, 10, 18].

The quantity of interest is denoted by a functional

I : V ×Q× P → R.(1.3)

This gives rise to the definition of the reduced quantity of interest i : P → R,

i(p) = I(U(p), Q(p), p).(1.4)

Likewise, we denote by j : P → R the reduced cost functional

j(p) = J(U(p), p) +
α

2
‖Q(p) − q‖2

Q.(1.5)

As stated above, the main contribution of this paper is to devise an efficient algo-
rithm to evaluate the first and second derivatives of the reduced quantity of interest
i(p).

The outline of the paper is as follows: In the next section we specify the first
order necessary optimality conditions for the problem under consideration. We recall
a primal-dual active set method for its solution. The core step of this method is
described in some detail since it is also used for the problems arising during the sensi-
tivity computation. In section 3 we use duality arguments for the efficient evaluation
of the first and second order sensitivities of the quantity of interest with respect to
perturbation parameters. Throughout, we compare the standard sensitivity analy-
sis for the reduced cost functional j(p) with our analysis for the reduced quantity of
interest i(p). In the last section we discuss two numerical examples illustrating our ap-
proach. The first example deals with a parameter identification problem for a channel
flow described by the incompressible Navier–Stokes equations. In the second exam-
ple we consider the optimal control of time-dependent three-species reaction-diffusion
equations under control constraints.

2. Optimization algorithm. In this section we recall the first order necessary
conditions for the problem (OP(p)) and describe the optimization algorithm with
active set strategy which we use in our numerical examples. In particular, we specify
the Newton step taking into account the active sets since the sensitivity problems
arising in section 3 are solved by the same technique.

Throughout the paper we make the following assumption.
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Assumption 2.1.

1. Let a(·, ·, ·)(·) be three times continuously differentiable with respect to (u, q, p).
2. Let J(·, ·) be three times continuously differentiable with respect to (u, p).
3. Let I(·, ·, ·) be twice continuously differentiable with respect to (u, q, p).

In order to establish the optimality system, we introduce the Lagrangian L :
V ×Q× V × P → R as follows:

L(u, q, z, p) = J(u, p) +
α

2
‖q − q‖2

Q + f(z) − a(u, q, p)(z),(2.1)

where z ∈ V denotes the adjoint state. The first order necessary conditions for the
problem (OP(p)) read

L′
u(u, q, z, p)(δu) = 0 ∀δu ∈ V,(2.2)

L′
q(u, q, z, p)(δq − q) ≥ 0 ∀δq ∈ Qad,(2.3)

L′
z(u, q, z, p)(δz) = 0 ∀δz ∈ V.(2.4)

They can be explicitly rewritten as follows:

J ′
u(u, p)(δu) − a′u(u, q, p)(δu, z) = 0 ∀δu ∈ V,(2.5)

α(q − q, δq − q) − a′q(u, q, p)(δq − q, z) ≥ 0 ∀δq ∈ Qad,(2.6)

f(δz) − a(u, q, p)(δz) = 0 ∀δz ∈ V.(2.7)

For given u, q, z, p, we introduce an additional Lagrange multiplier μ ∈ L2(ω) by the
following identification:

(μ, δq) := −L′
q(u, q, z, p)(δq)

= −α(q − q, δq) + a′q(u, q, p)(δq, z) ∀δq ∈ L2(ω).

The variational inequality (2.6) is known to be equivalent to the following pointwise
conditions a.e. on ω:

q(x) = b−(x) ⇒ μ ≤ 0,(2.8)

q(x) = b+(x) ⇒ μ ≥ 0,(2.9)

b−(x) < q(x) < b+(x) ⇒ μ = 0.(2.10)

In addition to the necessary conditions above, in the following lemma we recall
second order sufficient optimality conditions.

Lemma 2.2 (sufficient optimality conditions). Let x = (u, q, z) satisfy the first
order necessary conditions (2.2)–(2.4) of (OP(p)). Moreover, let a′u(u, q, p) : V → V ′

be surjective. If there exists ρ > 0 such that

(
δu δq

) [L′′
uu(x, p) L′′

uq(x, p)
L′′
qu(x, p) L′′

qq(x, p)

](
δu
δq

)
≥ ρ

(
‖δu‖2

V + ‖δq‖2
Q
)

holds for all (δu, δq) satisfying the linear (tangent) PDE

a′u(u, q, p)(δu, ϕ) + a′q(u, q, p)(δq, ϕ) = 0 ∀ϕ ∈ V,

then (u, q) is a strict local optimal solution of (OP(p)).
For the proof we refer the reader to [19].
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For the solution of the first order necessary conditions (2.5)–(2.7) for fixed p ∈ P,
we employ a nonlinear primal-dual active set strategy; see [4, 12, 15, 16]. In the
following we sketch the corresponding algorithm on the continuous level:

Nonlinear primal-dual active set strategy

1. Choose initial guess u0, q0, z0, μ0 and c > 0 and set n = 1

2. While not converged

3. Determine the active sets An
+ and An

−

An
− = {x ∈ ω | qn−1 + μn−1/c− b− ≤ 0},

An
+ = {x ∈ ω | qn−1 + μn−1/c− b+ ≥ 0}

4. Solve the equality-constrained optimization problem

Minimize J(un, p) +
α

2
‖qn − q‖2

Q over V ×Q

subject to (1.1) and to

qn(x) = b−(x) on An
−, qn(x) = b+(x) on An

+

with adjoint variable zn

5. Set μn = −α(qn − q) + a′q(u
n, qn, p)(·, zn)

6. Set n = n + 1 and go to 2.

Remark 2.3.

1. The initial guess for the Lagrange multiplier μ0 can be taken according to
step 5. Another possibility is choosing μ0 = 0 and q0 ∈ Qad, which leads to
solving the optimization problem (step 4) without control constraints in the
first iteration.

2. The convergence in step 2 can be determined conveniently from agreement of
the active sets in two consecutive iterations. The problem is then solved only
on the inactive set In = ω \ (An

− ∪ An
+), e.g., by applying Newton’s method

to the corresponding first order necessary conditions.

Later on, the above algorithm is applied on the discrete level. The concrete
discretization schemes are described in section 4 for each individual example.

Clearly, the main step in the primal-dual algorithm is the solution of the equality-
constrained nonlinear optimization problem in step 4. We shall describe the Lagrange
Newton SQP method for its solution in some detail since exactly the same procedure
may be used to solve the sensitivity problems in section 3, which are the main focus
of our paper.

For given active and inactive sets A = A+ ∪A− and I = ω \ A, let us define the
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“restriction” operator RI : L2(ω) → L2(ω) by

RI(q) = q · χI ,

where χI is a characteristic function of the set I. Similarly, the operators RA, RA+ ,
and RA− are defined. Note that RI , etc., are obviously self-adjoint.

The first order necessary conditions for the purely equality-constrained problem
in step 4 are (compare (2.2)–(2.4), respectively, (2.5)–(2.7)):

L′
u(u, q, z, p)(δu) = 0 ∀δu ∈ V,(2.11)

L′
q(u, q, z, p)(δq) = 0 ∀δq ∈ L2(In),(2.12)

q − b− = 0 on An
−,(2.13)

q − b+ = 0 on An
+,(2.14)

L′
z(u, q, z, p)(δz) = 0 ∀δz ∈ V,(2.15)

with the inactive set In = ω\(An
−∪An

+). Using the restriction operators, (2.12)–(2.14)
can be reformulated as

L′
q(u, q, z, p)(RInδq) + (q − b−, RAn

−δq) + (q − b+, RAn
+
δq) = 0 ∀δq ∈ Q.

The Lagrange Newton SQP method is defined as Newton’s method, applied to (2.11)–
(2.15). To this end, we define B as the Hessian operator of the Lagrangian L, i.e.,

B(x, p) =

⎡⎣L′′
uu(x, p)(·, ·) L′′

uq(x, p)(·, ·) L′′
uz(x, p)(·, ·)

L′′
qu(x, p)(·, ·) L′′

qq(x, p)(·, ·) L′′
qz(x, p)(·, ·)

L′′
zu(x, p)(·, ·) L′′

zq(x, p)(·, ·) 0

⎤⎦ .(2.16)

To shorten the notation, we abbreviate x = (u, q, z) and X = V × Q × V. Note
that B(x, p) is a bilinear operator on the space X . By “multiplication” of B with an
element δx ∈ X from the left, we mean the insertion of the components of δx into the
first argument. Similarly we define the “multiplication” of B with an element δx ∈ X
from the right as insertion of the components of δx into the second argument. When
only one element is inserted, B is interpreted as a linear operator B : X → X ′. In
what follows, we shall omit the (·, ·) notation if no ambiguity arises.

In the absence of control constraints, the Newton update (Δu,Δq,Δz) for (2.11)–
(2.15) at the current iterate (uk, qk, zk) is given by the solution of

B(xk, p)

⎛⎝Δu
Δq
Δz

⎞⎠ = −

⎛⎝L′
u(xk, p)

L′
q(xk, p)

L′
z(xk, p)

⎞⎠ .(2.17)

With nonempty active sets An
− and An

+, however, (2.17) is replaced by

B̃(xk, p)

⎛⎝Δu
Δq
Δz

⎞⎠ = −

⎛⎝ L′
u(xk, p)

RInL′
q(xk, p) + RAn

−(qk − b−) + RAn
+
(qk − b+)

L′
z(xk, p)

⎞⎠ ,(2.18)

where

B̃(xk, p) =

⎛⎝id
RIn

id

⎞⎠B(xk, p)

⎛⎝id
RIn

id

⎞⎠ +

⎛⎝0
RAn

0

⎞⎠ .(2.19)
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In other words, B̃ is obtained from B by replacing those components in the derivatives
with respect to the control q by the identity which belongs to the active set. In our
practical realization, we reduce the system (2.18) to the control space L2(ω) using
Schur complement techniques; see, e.g., [17]. The reduced system is solved iteratively
using the conjugate gradient method, where each step requires the evaluation of a
matrix-vector product for the reduced Hessian, which in turn requires the solution of
one tangent and one dual problem; see, e.g., [13] or [2] for a detailed description of this
procedure in the context of space-time finite element discretization of the problem.
In fact, the reduced system needs to be solved only on the currently inactive part
L2(In) of the control space since on the active sets, the update Δq satisfies the trivial
relation RAn

±(Δq) = RAn
±(b± − qk−1).

The Newton step is completed by applying the update

(uk+1, qk+1, zk+1) = (uk, qk, zk) + (Δu,Δq,Δz).

3. Sensitivity analysis. In this section we analyze the behavior of local optimal
solutions for (OP(p)) under perturbations of the parameter p. We derive formulas for
the first and second order derivatives of the reduced quantity of interest and develop
an efficient method for their evaluation.

To set the stage, we outline the main ideas in section 3.1 by means of a finite-
dimensional optimization problem, without partitioning the optimization variables
into states and controls, and in the absence of control constraints. To facilitate the
discussion of the infinite-dimensional case, we treat the case of no control constraints
in section 3.2 and turn to problems with these constraints in section 3.3. Throughout,
we compare the standard sensitivity analysis for the reduced cost functional j(p) (1.5)
with our analysis for the reduced quantity of interest i(p) (1.4). The main results can
be found in Theorem 3.6 for the unconstrained case and in Theorems 3.18 and 3.21
for the case with control constraints. An algorithm at the end of section 3 summarizes
the necessary steps to evaluate the various sensitivity quantities.

3.1. Outline of ideas. Let us consider the nonlinear finite-dimensional equality-
constrained optimization problem

Minimize J(x, p) s.t. g(x, p) = 0,(3.1)

where x ∈ R
n denotes the optimization variable, p ∈ R

d is the perturbation parameter,
and g : R

n × R
d → R

m collects a number of equality constraints. The Lagrangian of
(3.1) is L(x, p) = J(x, p) − z�g(x, p), and under standard constraint qualifications, a
local minimizer x0 of (3.1) at the reference parameter p0 has an associated Lagrange
multiplier z0 ∈ R

m such that

L′
x(x0, z0, p0) = J ′

x(x0, p0) − z�0 g′x(x0, p0) = 0,

L′
z(x0, z0, p0) = g(x0, p0) = 0

(3.2)

hold. If we assume second order sufficient conditions to hold in addition, then the
implicit function theorem yields the local existence of functions X(p) and Z(p) which
satisfy (3.2) with p instead of p0, and X(p0) = x0 and Z(p0) = z0 hold. Moreover,
(3.2) can be differentiated totally with respect to the parameter and we obtain(

L′′
xx(x0, z0, p0) g′x(x0, p0)

�

g′x(x0, p0) 0

)(
X ′(p0) δp
Z ′(p0) δp

)
= −

(
L′′
xp(x0, z0, p0) δp
g′p(x0, p0) δp

)
.(3.3)
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The solution of (3.3) is a directional derivative of X(p) (and Z(p)) at p = p0, and we
note that it is equivalent to the solution of a linear-quadratic optimization problem.
Hence the evaluation of the full Jacobian X ′(p0) requires d = dimP solves of (3.3)
with different δp. In our context of large-scale problems, iterative solvers need to be
used and the numerical effort to evaluate the full Jacobian scales linearly with the
number of right-hand sides, i.e., with the dimension of the parameter space d = dimP.

We adapt the definition of the reduced cost functional and the reduced quantity
of interest to our current setting, j(p) = J(X(p), p) and i(p) = I(X(p), p). Since we
wish to compare the effort to compute the first and second order derivatives of both,
we begin by recalling the following result.

Lemma 3.1. Under the conditions above, the reduced cost functional is twice
differentiable and

j′(p0) δp = L′
p(x0, z0, p0) δp,

δp�j′′(p0) δ̂p = δp�
[
L′′
px(x0, z0, p0)X

′(p0) δ̂p + L′′
pz(x0, z0, p0)Z

′(p0) δ̂p

+ L′′
pp(x0, z0, p0) δ̂p

]
.

Proof. We have j(p) = L(X(p), Z(p), p) and hence by the chain rule j′(p0) =
L′
x(x0, z0, p0)X

′(p0) + L′
z(x0, z0, p0)Z

′(p0) + L′
p(x0, z0, p0), where the first two terms

vanish in view of (3.2). Differentiating again totally with respect to p yields the
expression for the second derivative.

Lemma 3.1 shows that the evaluation of the gradient of j(·) does not require
any linear solves of the sensitivity system (3.3), while the evaluation of the Hessian
requires d = dimP such solves. The corresponding results for the infinite-dimensional
case can be found below in Propositions 3.5 and 3.16 for the unconstrained and control
constrained cases.

We will show now that the derivatives of the reduced quantity of interest i(·) can
be evaluated efficiently, requiring just one additional system solve. This is a significant
improvement over a direct approach; see Table 3.1.

From a first look at

i′(p0) δp = I ′x(x0, p0)X
′(p0) δp + I ′p(x0, p0) δp

it seems that the evaluation of the gradient i′(p0) requires d = dimP solves of the
system (3.3). This is referred to as the direct approach in Table 3.1. However, using
(3.3), we may rewrite this as

i′(p0) δp =
[
−
(
I ′x(x0, p0), 0

)
B−1

0

](L′′
xp(x0, z0, p0) δp
g′p(x0, p0) δp

)
+ I ′p(x0, p0) δp,

where B0 is the matrix on the left-hand side of (3.3). Realizing that I ′x(x0, p0) has just
one row, evaluating the term in square brackets amounts to only one linear system
solve. We define the dual quantities (v, y) by

B�
0

(
v
y

)
= −

(
I ′x(x0, p0)

0

)
and finally obtain

i′(p0) δp = v�L′′
xp(x0, z0, p0) δp + y�L′′

zp(x0, z0, p0) δp + I ′p(x0, p0) δp.(3.4)
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We refer to this as a dual approach. In our context, B0 is symmetric and hence the
computation of the dual quantities requires just one solve of (3.3) with a modified
right-hand side; see again Table 3.1.

For the second derivative, we differentiate (3.4) totally with respect to p. From
the chain rule we infer that the sensitivities X ′(p0) and Z ′(p0) now come into play.
In addition, v and y need to be differentiated with respect to p, but again a duality
technique can be used in order to avoid computing these extra terms. Hence the extra
computational cost to evaluate the Hessian of i(·) amounts to d = dimP solves for
the evaluation of the sensitivity matrices X ′(p0) and Z ′(p0); see Table 3.1. Details
can be found in the proofs of Theorem 3.6 for the unconstrained case and Theorems
3.18 and 3.21 for the case with control constraints.

3.2. The case of no control constraints. Throughout this and the following
section, we denote by p0 ∈ P a given reference parameter and by x0 = (u0, q0, z0) a
solution to the corresponding first order optimality system (2.11)–(2.15). Moreover,
we make the following regularity assumption which we require throughout.

Assumption 3.2. Let the derivative a′u(u0, q0, p0) : V → V ′ be both surjective
and injective, so that it possesses a continuous inverse.

In the case of no control constraints, i.e., Qad = Q, the first order necessary
conditions (2.11)–(2.15) simplify to

L′
u(u, q, z, p)(δu) = 0 ∀δu ∈ V,(3.5)

L′
q(u, q, z, p)(δq) = 0 ∀δq ∈ Q,(3.6)

L′
z(u, q, z, p)(δz) = 0 ∀δz ∈ V.(3.7)

The analysis in this subsection is based on the classical implicit function theorem.
We denote by B0 = B(x0, p0) the previously defined Hessian operator at the given
reference solution. For the results in this section we require that B0 is boundedly
invertible. This property follows from the second order sufficient conditions; see, for
instance, [14].

Lemma 3.3. Let the second order sufficient conditions set forth in Lemma 2.2
hold at x0 for OP(p0). Then B0 is boundedly invertible.

The following lemma is a direct application of the implicit function theorem
(see [5]) to the first order optimality system (3.5)–(3.7).

Lemma 3.4. Let B0 be boundedly invertible. Then there exist neighborhoods
N (p0) ⊂ P of p0 and N (x0) ⊂ X of x0 and a continuously differentiable function
(U,Q,Z) : N (p0) → N (x0) with the following properties:

(a) For every p ∈ N (p0), (U(p), Q(p), Z(p)) is the unique solution to the system
(3.5)–(3.7) in the neighborhood N (x0).

(b) (U(p0), Q(p0), Z(p0)) = (u0, q0, z0) holds.
(c) The derivative of (U,Q,Z) at p0 in the direction δp ∈ P is given by the

unique solution of

B0

⎛⎝U ′(p0)(δp)
Q′(p0)(δp)
Z ′(p0)(δp)

⎞⎠ = −

⎛⎝L′′
up(x0, p0)(·, δp)

L′′
qp(x0, p0)(·, δp)

L′′
zp(x0, p0)(·, δp)

⎞⎠ .(3.8)

In the following proposition we recall the first and second order sensitivity deriva-
tives of the cost functional j(p); compare this to [18].

Proposition 3.5. Let B0 be boundedly invertible. Then the reduced cost func-
tional j(p) = J(U(p), p)+ α

2 ‖Q(p)−q‖2
Q is twice continuously differentiable in N (p0).
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The first order derivative at p0 in the direction δp ∈ P is given by

j′(p0)(δp) = L′
p(x0, p0)(δp).(3.9)

For the second order derivative in the directions of δp and δ̂p, we have

j′′(p0)(δp, δ̂p) = L′′
up(x0, p0)(U

′(p)(δp), δ̂p) + L′′
qp(x0, p0)(Q

′(p)(δp), δ̂p)

+ L′′
zp(x0, p0)(Z

′(p)(δp), δ̂p) + L′′
pp(x0, p0)(δp, δ̂p).(3.10)

Proof. Since (U(p), Q(p)) satisfies the state equation, we have

j(p) = L(U(p), Q(p), Z(p), p)

for all p ∈ N (p0). By the chain rule, the derivative of j(p) reads

j′(p0)(δp) = L′
u(x0, p0)(U

′(p0)(δp)) + L′
q(x0, p0)(Q

′(p0)(δp)) + L′
z(x0, p0)(Z

′(p0)(δp))

+ L′
p(x0, p0)(δp).

The three terms in the first line vanish in view of the optimality system (3.5)–(3.7).

Differentiating (3.9) again totally with respect to p in the direction of δ̂p yields (3.10),
which completes the proof.

The previous proposition allows us to evaluate the first order derivative of the
reduced cost functional without computing the sensitivity derivatives of the state,
control, and adjoint variables. That is, the effort to evaluate j′(p0) is negligible com-
pared to the effort required to solve the optimization problem. In order to obtain
second order derivative j′′(p0), however, the sensitivity derivatives have to be com-
puted according to formula (3.8). This corresponds to the solution of one additional
linear-quadratic optimization problem per perturbation direction δp, whose optimality
system is given by (3.8).

We now turn to our main result in the absence of control constraints. In the fol-
lowing theorem, we show that the first and second order derivatives of the quantity of
interest can be evaluated at practically the same effort as those of the cost functional.
To this end, we use a duality technique (see section 3.1) and formulate the following
dual problem for the dual variables v ∈ V, r ∈ Q, and y ∈ V:

B0

⎛⎝v
r
y

⎞⎠ = −

⎛⎝I ′u(q0, u0, p0)
I ′q(q0, u0, p0)

0

⎞⎠ .(3.11)

We remark that this dual problem involves the same operator matrix B0 as the sen-
sitivity problem (3.8) since B0 is self-adjoint.

Theorem 3.6. Let B0 be boundedly invertible. Then the reduced quantity of
interest i(p) defined in (1.4) is twice continuously differentiable in N (p0). The first
order derivative at p0 in the direction δp ∈ P is given by

(3.12) i′(p0)(δp) = L′′
up(x0, p0)(v, δp) + L′′

qp(x0, p0)(r, δp) + L′′
zp(x0, p0)(y, δp)

+ I ′p(u0, q0, p0)(δp).

For the second order derivative in the directions of δp and δ̂p, we have

(3.13) i′′(p0)(δp, δ̂p) = 〈v, η〉V×V′ + 〈r, κ〉Q×Q′ + 〈y, σ〉V×V′

+

⎛⎝U ′(p0)(δp)
Q′(p0)(δp)

δp

⎞⎠� ⎛⎝I ′′uu(q0, u0, p0) I ′′uq(q0, u0, p0) I ′′up(q0, u0, p0)
I ′′qu(q0, u0, p0) I ′′qq(q0, u0, p0) I ′′qp(q0, u0, p0)
I ′′pu(q0, u0, p0) I ′′pq(q0, u0, p0) I ′′pp(q0, u0, p0)

⎞⎠
⎛⎜⎝U ′(p0)(δ̂p)

Q′(p0)(δ̂p)

δ̂p

⎞⎟⎠ .
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Here, (η, κ, σ) ∈ V ′ ×Q′ × V ′ is given by

⎛⎝η
κ
σ

⎞⎠ =

⎛⎜⎝L′′′
upp()(·, δp, δ̂p)

L′′′
qpp()(·, δp, δ̂p)

L′′′
zpp()(·, δp, δ̂p)

⎞⎟⎠
+

⎛⎜⎝L′′′
upu()(·, δp, U ′(p0)(δ̂p)) + L′′′

upq()(·, δp,Q′(p0)(δ̂p)) + L′′′
upz()(·, δp, Z ′(p0)(δ̂p))

L′′′
qpu()(·, δp, U ′(p0)(δ̂p)) + L′′′

qpq()(·, δp,Q′(p0)(δ̂p)) + L′′′
qpz()(·, δp, Z ′(p0)(δ̂p))

L′′′
zpu()(·, δp, U ′(p0)(δ̂p)) + L′′′

zpq()(·, δp,Q′(p0)(δ̂p))

⎞⎟⎠
+
(
B′

u()(U ′(p0)(δ̂p)) + B′
q()(Q

′(p0)(δ̂p)) + B′
z()(Z

′(p0)(δ̂p)) + B′
p()(δ̂p)

)⎛⎝U ′(p0)(δp)
Q′(p0)(δp)
Z ′(p0)(δp)

⎞⎠ .

Remark 3.7.

(a) In the definition of (η, κ, σ) we have abbreviated the evaluation at the point
(x0, p0) by ().

(b) The bracket 〈·, ·〉V×V′ in (3.13) denotes the duality pairing between V and its
dual space V ′. For instance, the evaluation of 〈v, η〉V×V′ amounts to plugging
in v instead of · in the definition of η. A similar notation is used for the
control space Q.

(c) It is tedious but straightforward to check that (3.13) coincides with (3.10) if
the quantity of interest is chosen equal to the cost functional. In this case, it
follows from (3.11) that the dual quantities v and r vanish and y = z0 holds.

Proof of Theorem 3.6. From the definition of the reduced quantity of interest
(1.4), we infer that

i′(p0)(δp) = I ′u(u0, q0, p0)(U
′(p0)(δp))(3.14)

+ I ′q(u0, q0, p0)(Q
′(p0)(δp)) + I ′p(u0, q0, p0)(δp)

holds. In virtue of (3.8) and (3.11), the sum of the first two terms equals

−

⎛⎝I ′u(u0, q0, p0)
I ′q(u0, q0, p0)

0

⎞⎠�

B−1
0

⎛⎝L′′
up(x0, p0)(·, δp)

L′′
qp(x0, p0)(·, δp)

L′′
zp(x0, p0)(·, δp)

⎞⎠ =

⎛⎝v
r
y

⎞⎠� ⎛⎝L′′
up(x0, p0)(·, δp)

L′′
qp(x0, p0)(·, δp)

L′′
zp(x0, p0)(·, δp)

⎞⎠ ,

which implies (3.12). In order to obtain the second derivative, we differentiate (3.14)

totally with respect to p in the direction of δ̂p. This yields

(3.15) i′′(p0)(δp, δ̂p)

=

⎛⎝U ′(p0)(δp)
Q′(p0)(δp)

δp

⎞⎠� ⎛⎝I ′′uu(q0, u0, p0) I ′′uq(q0, u0, p0) I ′′up(q0, u0, p0)
I ′′qu(q0, u0, p0) I ′′qq(q0, u0, p0) I ′′qp(q0, u0, p0)
I ′′pu(q0, u0, p0) I ′′pq(q0, u0, p0) I ′′pp(q0, u0, p0)

⎞⎠
⎛⎜⎝U ′(p0)(δ̂p)

Q′(p0)(δ̂p)

δ̂p

⎞⎟⎠
+

⎛⎝I ′u(u0, q0, p0)
I ′q(u0, q0, p0)

0

⎞⎠� ⎛⎜⎝U ′′(p0)(δp, δ̂p)

Q′′(p0)(δp, δ̂p)

Z ′′(p0)(δp, δ̂p)

⎞⎟⎠ .
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From differentiating (3.8) totally with respect to p in the direction of δ̂p, we obtain

B0

⎛⎜⎝U ′′(p0)(δp, δ̂p)

Q′′(p0)(δp, δ̂p)

Z ′′(p0)(δp, δ̂p)

⎞⎟⎠ = −

⎛⎝η
κ
σ

⎞⎠ .(3.16)

From here, (3.13) follows.
The main statement of the previous theorem is that the first and second order

derivatives of the reduced quantity of interest can be evaluated at the additional
expense of just one dual problem (3.11), compared to the evaluation of the reduced
cost functional’s derivatives. More precisely, computing the gradient of i(p) at p0

requires only the solution of (3.11). In addition, in order to compute the Hessian of
i(p) at p0, the sensitivity quantities U ′(p0), Q

′(p0), and Z ′(p0) need to be evaluated
in the directions of a collection of basis vectors of the parameter space P. That
is, dimP sensitivity problems (3.8) need to be solved. These are exactly the same
problems which have to be solved for the computation of the Hessian of the reduced
cost functional ; see Table 3.1. Note that in the combined effort 1 + dimP, “1” refers
to the same dual problem (3.11) that has already been solved during the computation
of the gradient of i(p). In case that the space P is infinite-dimensional, it needs to be
discretized first. Finally, in order to evaluate the second order Taylor expansion for a
given direction δp,

i(p0 + δp) ≈ i(p0) + i′(p0)(δp) +
1

2
i′′(p0)(δp, δp),

the same dual problem (3.11) and one sensitivity problem (3.8) in the direction of δp
are needed; see Table 3.1.

Table 3.1

Number of linear-quadratic problems to be solved to evaluate the derivatives of j(p) and i(p).

Reduced cost functional j(p) Reduced quantity of interest i(p)
Dual approach Direct approach

Gradient 0 1 dimP
Hessian dimP 1 + dimP (dimP) (dimP + 1)/2

Note that the sensitivity and dual problems (3.8) and (3.11), respectively, are
solved by the technique described in section 2. The solution of such problems amounts
to the computation of one additional QP step (2.17), with a different right-hand side.
Therefore, the numerical effort to compute, e.g., the second order Taylor expansion
for a given direction is typically low compared to the solution of the nonlinear opti-
mization problem OP(p0).

3.3. The control-constrained case. The analysis is based on the notion of
strong regularity for the problem OP(p). Strong regularity extends the previous
assumption of bounded invertibility of B0 used throughout section 3.2.

Below, we make use of μ0 ∈ Q given by the following identification:

(μ0, δq) = −L′
q(x0, p0)(δq) ∀δq ∈ Q.(3.17)

This quantity acts as a Lagrange multiplier for the control constraint q ∈ Qad. For the
definition of strong regularity we introduce the following linearized optimality system
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which depends on ε = (εu, εq, εz) ∈ V ×Q× V:

(LOS(ε))

L′′
uu(x0, p0)(δu, u− u0) + L′′

uq(x0, p0)(δu, q − q0)

+ L′′
uz(x0, p0)(δu, z − z0) + L′

u(x0, p0)(δu)

+ (εu, δu)V = 0 ∀δu ∈ V,(3.18)

L′′
uq(x0, p0)(u− u0, δq − q) + L′′

qq(x0, p0)(δq − q, q − q0)

+ L′′
qz(x0, p0)(δq − q, z − z0)

+ L′
q(x0, p0)(δq − q) + (εq, δq − q) ≥ 0 ∀δq ∈ Qad,(3.19)

L′′
zu(x0, p0)(δz, u− u0) + L′′

zq(x0, p0)(δz, q − q0)

+ L′
z(x0, p0)(δz) + (εz, δz)V = 0 ∀δz ∈ V.(3.20)

In what follows, we refer to (3.18)–(3.20) as (LOS(ε)).
Definition 3.8 (strong regularity). Let p0 ∈ P be a given reference parameter

and let x0 = (u0, q0, z0) be a solution to the corresponding first order optimality system
(2.5)–(2.7). If there exist neighborhoods N (0) ⊂ X = V ×Q×V of 0 and N (x0) ⊂ X
of x0 such that

(a) for every ε ∈ N (0), there exists a solution (uε, qε, zε) to the linearized opti-
mality system (3.18)–(3.20),

(b) (uε, qε, zε) is the unique solution of (3.18)–(3.20) in N (x0), and
(c) (uε, qε, zε) depends Lipschitz-continuously on ε, i.e., there exists L > 0 such

that

‖uε1 − uε2‖V + ‖qε1 − qε2‖Q + ‖zε1 − zε2‖V ≤ L ‖ε1 − ε2‖X(3.21)

holds for all ε1, ε2 ∈ N (0),
then the first order optimality system (2.5)–(2.7) is called strongly regular at x0.

Note that (u0, q0, z0) solves (3.18)–(3.20) for ε = 0. It is not difficult to see that in
the case of no control constraints, i.e., Q = Qad, strong regularity is nothing else than
bounded invertibility of B0 which we had to assume in section 3.2. In the following
lemma we show that strong regularity holds under suitable second order sufficient
optimality conditions, in analogy to Lemma 3.3. The proof can be carried out using
the techniques presented in [21].

Lemma 3.9. Let the second order sufficient optimality conditions set forth in
Lemma 2.2 hold at x0 for OP(p0). Then for any ε ∈ X , (3.18)–(3.20) has a unique
solution (uε, qε, zε) and the map

X � ε �→ (uε, qε, zε) ∈ X(3.22)

is Lipschitz continuous. That is, the optimality system is strongly regular at x0.
In the next step, we proceed to prove that the solution (uε, qε, zε) of the lin-

earized optimality system (3.18)–(3.20) is directionally differentiable with respect to
the perturbation ε. To this end, we need the following assumption.

Assumption 3.10. At the reference point (u0, q0, z0), let the following linear
operators be compact:

1. V � u �→ a′′qu(u0, q0, p0)(·, u, z0) ∈ Q′,

2. Q � q �→ a′′qq(u0, q0, p0)(·, q, z0) ∈ Q′,

3. V � z �→ a′q(u0, q0, p0)(·, z) ∈ Q′.
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Remark 3.11. The previous assumption is satisfied for the following important
classes of PDE-constrained optimization problems on bounded domains Ω ⊂ R

d,
d ∈ {1, 2, 3}:

(a) If (OP(p)) is a distributed optimal control problem for a semilinear elliptic
PDE, e.g.,

−Δu = f(u) + q on Ω

with V = H1
0 (Ω) and Q = L2(Ω), then a′′qu = a′′qq = 0 and a′q is the compact

injection of V into Q.
(b) In the case of Neumann boundary control on ∂Ω, e.g.,

−Δu = f(u) on Ω and
∂

∂n
u = q on ∂Ω,

we have V = H1(Ω) and Q = L2(∂Ω). Again, a′′qu = a′′qq = 0 and a′q is the
compact Dirichlet trace operator from V to Q.

(c) For bilinear control problems, e.g.,

−Δu = qu + f on Ω

with V = H1
0 (Ω), Q = L2(Ω), and an appropriate admissible set Qad, we have

a′′qq = 0. Moreover, the operators u �→ a′′qu(u0, q0, p0)(·, u, z0) = (uz0, ·) and
z �→ a′q(u0, q0, z0) = (u0z, ·) are compact from V to Q′ since the pointwise
product of two functions in V embeds compactly into Q.

(d) For parabolic equations such as

ut = Δu + f(u) + q

with solutions in V = {u ∈ L2(0, T ;H1
0 (Ω)) : ut ∈ L2(0, T ;H−1(Ω))} we have

a′′qu = a′′qq = 0 and a′q is the compact injection of V into Q = L2(Ω × (0, T )).
(e) Finally, Assumption 3.10 is always satisfied if the space Q is finite-dimen-

sional. This includes all cases of parameter identification problems without
any additional restrictions on the coupling between the parameters q and the
state variable u. For instance, the Arrhenius law leads to reaction-diffusion
equations of the form

−Δu = f(u) + equ on Ω

with unknown Arrhenius parameter q ∈ R.
For the following theorem, we introduce the admissible set Q̂ad, defined as

Q̂ad = {q̂ ∈ Q : b̂−(x) ≤ q̂(x) ≤ b̂+(x) a.e. on ω}

with bounds

b̂−(x) =

{
0 if μ0(x) �= 0 or q0(x) = b−(x),

−∞ else,

b̂+(x) =

{
0 if μ0(x) �= 0 or q0(x) = b+(x),

+∞ else.

Theorem 3.12. Let the second order sufficient optimality conditions set forth in
Lemma 2.2 hold at x0 for OP(p0) in addition to Assumption 3.10. Then the map
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(3.22) is directionally differentiable at ε = 0 in every direction δε = (δεu, δεq, δεz) ∈
X . The directional derivative is given by the unique solution (û, q̂) and adjoint variable
ẑ of the following linear-quadratic optimal control problem, termed DQP(δε):

Minimize
1

2

(
û q̂

)(L′′
uu(x0, p0) L′′

uq(x0, p0)
L′′
qu(x0, p0) L′′

qq(x0, p0)

)(
û
q̂

)
+ (û, δεu)V + (q̂, δεq)

(DQP(δε))

subject to q̂ ∈ Q̂ad and

a′u(u0, q0, p0)(û, φ) + a′q(u0, q0, p0)(q̂, φ) + (δεz, φ) = 0 ∀φ ∈ V.
The first order optimality conditions for this problem read

L′′
uu(x0, p0)(δu, û) + L′′

uq(x0, p0)(δu, q̂)

+ L′′
uz(x0, p0)(δu, ẑ) + (δεu, δu) = 0 ∀δu ∈ V,(3.23)

L′′
uq(x0, p0)(û, δq − q̂) + L′′

qq(x0, p0)(δq − q̂, q̂)

+ L′′
qz(x0, p0)(δq − q̂, ẑ) + (δεq, δq − q̂) ≥ 0 ∀δq ∈ Q̂ad,(3.24)

L′′
zu(x0, p0)(δz, û) + L′′

zq(x0, p0)(δz, q̂)

+ (δεz, δz) = 0 ∀δz ∈ V.(3.25)

Proof. Let δε = (δεu, δεq, δεz) ∈ X be given and let {τn} ⊂ R
+ denote a sequence

converging to zero. We denote by (un, qn, zn) ∈ X the unique solution of LOS(εn),
where εn = τnδε. Note that (u0, q0, z0) is the unique solution of LOS(0) and that
(un, qn, zn) → (u0, q0, z0) strongly in X . From Lemma 3.9 we infer that∥∥∥∥un − u0

τn

∥∥∥∥
V

+

∥∥∥∥qn − q0
τn

∥∥∥∥
Q

+

∥∥∥∥zn − z0

τn

∥∥∥∥
V
≤ L ‖δε‖X .

This implies that a subsequence (still denoted by index n) of the difference quotients
converges weakly to some limit element (û, q̂, ẑ) ∈ X . The proof proceeds with the
construction of the pointwise limit q̃ of (qn − q0)/τn, which is later shown to coincide
with q̂. It is well known that the variational inequality (3.19) in LOS(εn) can be
equivalently rewritten as

qn(x) = Π[b−(x),b+(x)]

(
dn(x)

)
a.e. on ω,(3.26)

where Π[b−(x),b+(x)] is the projection onto the interval [b−(x), b+(x)] and

dn = q̄ +
1

α

(
a′′qu(u0, q0, p0)(·, un − u0, z0) + a′′qq(u0, q0, p0)(·, qn − q0, z0)

+ a′q(u0, q0, p0)(·, zn) − εqn

)
∈ Q.(3.27)

The linear operators in (3.27) are understood as their Riesz representations in Q.
Similarly, we have q0(x) = Π[b−(x),b+(x)]

(
d0(x)

)
a.e. on ω, where

d0 = q̄ +
1

α
a′q(u0, q0, p0)(·, z0) ∈ Q.(3.28)

Note that dn → d0 strongly in Q since the Fréchet derivatives in (3.27) are bounded
linear operators. From the compactness properties in Assumption 3.10 we infer that

dn − d0

τn
→ d̂ strongly in Q, where

d̂ =
1

α

(
a′′qu(u0, q0, p0)(·, û, z0) + a′′qq(u0, q0, p0)(·, q̂, z0) + a′q(u0, q0, p0)(·, ẑ) − δεq

)
.
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By taking another subsequence, we obtain that dn → d0 and (dn − d0)/τn → d̂ hold
also pointwise a.e. on ω. The construction of the pointwise limit

q̃(x) = lim
n→∞

qn(x) − q0(x)

τn

uses the following partition of ω into five disjoint subsets:

ω = ωI ∪ ω+
0 ∪ (ω+ \ ω+

0 ) ∪ ω−
0 ∪ (ω− \ ω−

0 ),(3.29)

where

ωI = {x ∈ ω : b−(x) < q0(x) < b+(x)} (inactive),(3.30a)

ω+
0 = {x ∈ ω : μ0(x) > 0} (upper strongly active),(3.30b)

ω+ = {x ∈ ω : q0(x) = b+(x)} (upper active),(3.30c)

ω−
0 = {x ∈ ω : μ0(x) < 0} (lower strongly active),(3.30d)

ω− = {x ∈ ω : q0(x) = b−(x)} (lower active).(3.30e)

The Lagrange multiplier μ0 belonging to the constraint q0 ∈ Qad defined in (3.17)
allows the following representation:

μ0 = α(d0 − q0).(3.31)

Note that the five sets in (3.29) are guaranteed to be disjoint if b−(x) < b+(x) holds
a.e. on ω. However, one can easily check that q̃ is well defined also in the case that
the bounds coincide on all or part of ω. We now distinguish five cases according to
the sets in (3.29).

Case 1. For almost every x in the inactive subset ωI , we have q0(x) = d0(x) and
qn(x) = dn(x) for all sufficiently large n. Therefore,

q̃(x) = lim
n→∞

qn(x) − q0(x)

τn
= d̂(x).

Case 2. For almost every x ∈ ω+
0 , μ0(x) > 0 implies d0(x) > q0(x) by (3.31).

Therefore, q0(x) = b+(x) and dn(x) > q0(x) for sufficiently large n. Hence qn = b+(x)
for these n and

q̃(x) = lim
n→∞

qn(x) − q0(x)

τn
= 0.

Case 3. For almost every x ∈ ω+ \ ω+
0 , we have q0(x) = b+(x) = d0(x).

(a) If d̂(x) > 0, then dn(x) > b+(x) for sufficiently large n. Therefore, qn(x) =
b+(x) for these n and hence q̃(x) = 0.

(b) If d̂(x) = 0, then (qn(x)−q0(x))/τn = min{0, dn(x)−b+(x)}/τn for sufficiently
large n; hence q̃(x) = 0.

(c) If d̂(x) < 0, then dn(x) < b+(x) and hence qn(x) = dn(x) for sufficiently large

n. Therefore, q̃(x) = d̂(x) holds.
Case 3 can be summarized as

q̃(x) = lim
n→∞

qn(x) − q0(x)

τn
= min{0, d̂(x)}.
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Case 4. For almost every x ∈ ω−
0 , we obtain, similarly to Case 2,

q̃(x) = lim
n→∞

qn(x) − q0(x)

τn
= 0.

Case 5. For almost every x ∈ ω− \ ω−
0 , we obtain, similarly to Case 3,

q̃(x) = lim
n→∞

qn(x) − q0(x)

τn
= max{0, d̂(x)}.

Summarizing all previous cases, we have shown that

q̃(x) = Π[b̂−(x),b̂+(x)](d̂(x)).(3.32)

We proceed by showing that

qn − q0
τn

→ q̃ strongly in Q = L2(ω).(3.33)

From the Lipschitz continuity of the projection Π, it follows that∥∥∥∥qn − q0
τn

− q̃

∥∥∥∥
Q

=

∥∥∥∥ 1

τn
(ΠQad

(dn) − ΠQad
(d0)) − ΠQ̂ad

(d̂)

∥∥∥∥
Q

≤
∥∥∥∥dn − d0

τn

∥∥∥∥
Q

+ ‖d̂‖Q → 2‖d̂‖Q.

From Lebesgue’s dominated convergence theorem, (3.33) follows. Consequently, we
have q̃ = q̂. The projection formula (3.32) is equivalent to the variational inequality
(3.24). Using (3.18) and (3.20) for (un, qn, zn) and for (u0, q0, z0), we infer that the
weak limit (û, q̂, ẑ) satisfies (3.23) and (3.25). It is readily checked that (3.23)–(3.25)
are the first order necessary conditions for (DQP(δε)). In view of the second order
sufficient optimality conditions (Lemma 2.2), (DQP(δε)) is strictly convex and thus
it has a unique solution. In view of Assumption 3.2 and (3.25), we obtain∥∥∥∥un − u0

τn
− û

∥∥∥∥
V
≤ C

∥∥∥∥qn − q0
τn

− q̂

∥∥∥∥
Q
,

where C is independent of n. Hence û is also the strong limit of the difference quotient
in V. The same argument holds for ẑ. Our whole argument remains valid if in the
beginning, we start with an arbitrary subsequence of {τn}. Since the limit (û, q̂, ẑ) is
always the same, the convergence extends to the whole sequence.

From the previous theorem we derive the following important corollary. The
proof follows from a direct application of the implicit function theorem for generalized
equations; see [6, Theorem 2.4].

Corollary 3.13. Under the conditions of the previous theorem, there exist
neighborhoods N (p0) ⊂ P of p0 and N (x0) ⊂ X of x0 and a directionally differentiable
function (U,Q,Z) : N (p0) → N (x0) with the following properties:

(a) For every p ∈ N (p0), (U(p), Q(p), Z(p)) is the unique solution to the system
(2.5)–(2.7) in the neighborhood N (x0).

(b) (U(p0), Q(p0), Z(p0)) = (u0, q0, z0) holds.



SENSITIVITY ANALYSIS FOR THE QUANTITY OF INTEREST 39

(c) The directional derivative of (U,Q,Z) at p0 in the direction δp ∈ P is given
by the derivative of ε �→ (uε, qε, zε) at ε = 0 in the direction

δε =

⎛⎝L′′
up(x0, p0)(·, δp)

L′′
qp(x0, p0)(·, δp)

L′′
zp(x0, p0)(·, δp)

⎞⎠ ,(3.34)

i.e., by the solution and adjoint (û, q̂, ẑ) of DQP(δε).
We remark that computing the sensitivity derivative of (U,Q,Z) for a given di-

rection δp amounts to solving the linear-quadratic optimal control problem DQP(δε)
for δε given by (3.34). Note that this problem, like the original one OP(p0), is subject
to pointwise inequality constraints for the control variable. Due to the structure of
the admissible set Q̂ad, the directional derivative of (U,Q,Z) is in general not a linear
function of the direction δp, but only positively homogeneous. Note, however, that
if the admissible set Q̂ad is a linear space (which follows from a condition known as
strict complementarity; see below), then the directional derivative becomes a linear
function of the direction (i.e., it is the Gateaux differential).

Definition 3.14 (strict complementarity). Strict complementarity is said to
hold at (x0, p0) if {

x ∈ ω : q0(x) ∈ {b−(x), b+(x)} and μ0(x) = 0
}

is a set of measure zero.
A consequence of the strict complementarity condition is that the sensitivity

derivatives are characterized by a linear system of equations set forth in the following
lemma. We recall that B̃ was defined in (2.19) and that RI denotes the multiplication
of a function in L2(ω) with the characteristic function of the inactive set ωI = {x ∈ ω :
b−(x) < q0(x) < b+(x)}; see section 2.

Lemma 3.15. Under the conditions of Theorem 3.12 and if strict complementarity
holds at (x0, p0), then the directional derivative of (U,Q,Z) is characterized by the
following linear system of equations:

B̃(x0, p0)

⎛⎝U ′(p0)(δp)
Q′(p0)(δp)
Z ′(p0)(δp)

⎞⎠ = −

⎛⎝ L′′
up(x0, p0)(·, δp)

RIL′′
qp(x0, p0)(·, δp)

L′′
zp(x0, p0)(·, δp)

⎞⎠ .(3.35)

Moreover, the operator B̃(x0, p0) : X → X ′ is boundedly invertible.

Proof. By virtue of the strict complementarity property, the admissible set Q̂ad

defined in Theorem 3.12 becomes

Q̂ad =
{
q̂ ∈ Q : q̂(x) = 0, where q0(x) ∈ {b−(x), b+(x)}

}
.

Consequently, the variational inequality (3.24) simplifies to the following equation for

Q′(p0)(δp) ∈ Q̂ad:

L′′
qu(x0, p0)(δq, U

′(p0)(δp)) + L′′
qq(x0, p0)(δq,Q

′(p0)(δp))

+ L′′
qz(x0, p0)(δq, Z

′(p0)(δp)) = −L′′
qp(x0, p0)(δq, δp) ∀δq ∈ Q̂ad,

which is equivalent to the middle equation in (3.35). The first and third equation
in (3.35) coincide with (3.23) and (3.25), which proves the first claim. From Theo-

rem 3.12 we conclude that B̃(x0, p0) is bijective. Since it a continuous linear operator
from X → X ′, so is its inverse.
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We are now in the position to recall the first and second order sensitivity deriva-
tives of the reduced cost functional j(p); see again [18]. Note that we do not make
use of strict complementarity in the following proposition.

Proposition 3.16. Under the conditions of Theorem 3.12, the reduced cost
functional

j(p) = J(U(p), p) +
α

2
‖Q(p) − q‖2

Q

is continuously differentiable in N (p0). The derivative at p0 in the direction δp ∈ P
is given by

j′(p)(δp) = L′
p(x0, p0)(δp).(3.36)

Additionally, the second order directional derivatives of the reduced cost function j
exist and are given by the following formula:

(3.37) j′′(p0)(δp, δ̂p) = L′′
up(x0, p0)(U

′(p0)(δp), δ̂p) + L′′
qp(x0, p0)(Q

′(p0)(δp), δ̂p)

+ L′′
zp(x0, p0)(Z

′(p0)(δp), δ̂p) + L′′
pp(x0, p0)(δp, δ̂p).

Proof. As in the unconstrained case there holds

j′(p0)(δp) = L′
u(x0, p0)(U

′(p0)(δp)) + L′
q(x0, p0)(Q

′(p0)(δp))

+ L′
z(x0, p0)(Z

′(p0)(δp)) + L′
p(x0, p0)(δp),

and the terms L′
u and L′

z vanish. Moreover,

L′
q(x0, p0)(Q

′(p0)(δp)) = −(μ0, Q
′(p0)(δp)) = 0

since Q′(p0)(δp) is zero on the strongly active set and μ0 vanishes on its complement.
The formula for the second order derivative follows as in Proposition 3.5 by total
directional differentiation of the first order formula.

Remark 3.17. We note that the expressions for the first and second order deriva-
tives in Proposition 3.16 are the same as in the unconstrained case; see Proposi-
tion 3.5.

We now turn to our main result in the control-constrained case, concerning the
differentiability and efficient evaluation of the sensitivity derivatives for the reduced
quantity of interest (1.4). We recall that in the unconstrained case, we have made
use of a duality argument for the efficient computation of the first and second order
derivatives; see section 3.2. However, in the presence of control constraints, this
technique seems to be applicable only in the case of strict complementarity since
otherwise, the derivatives (U ′(p0)(δp), ξ

′(p0)(δp), Z
′(p0)(δp)) do not depend linearly

on the direction δp. In analogy to (3.11) and (3.35), we define the dual quantities
(ṽ, r̃, ỹ) ∈ X by

B̃(x0, p0)

⎛⎝ṽ
r̃
ỹ

⎞⎠ = −

⎛⎝ I ′u(q0, u0, p0)
RII

′
q(q0, u0, p0)

0

⎞⎠ .(3.38)

Theorem 3.18. Under the conditions of Theorem 3.12, the reduced quantity of
interest i(p) is directionally differentiable at the reference parameter p0. If, in addi-
tion, strict complementarity holds at (x0, p0), then the first order directional derivative



SENSITIVITY ANALYSIS FOR THE QUANTITY OF INTEREST 41

at p0 in the direction δp ∈ P is given by

(3.39) i′(p0)(δp) = L′′
up(x0, p0)(ṽ, δp) + L′′

qp(x0, p0)(RI r̃, δp) + L′′
zp(x0, p0)(ỹ, δp)

+ I ′p(u0, q0, p0)(δp).

Proof. The proof is carried out similarly to the proof of Theorem 3.6 using Lemma
3.15.

Our next goal is to consider second order derivatives of the reduced quantity
of interest. In order to apply the approach used in the unconstrained case, we rely
on the existence of second order directional derivatives of (U,Q,Z) at p0. However,
these second order derivatives do not exist without further assumptions, as seen from
the following simple consideration: Suppose that near a given reference parameter
p0 = 0, the local optimal control is given by Q(p)(x) = max{0, x + p} ∈ L2(ω) for
x ∈ ω = (−1, 1) and p ∈ R. (An appropriate optimal control problem (OP(p)) can be
easily constructed.) Then Q′(p)(x) = H(x+ p) (the Heaviside function), which is not
directionally differentiable with respect to p and values in L2(ω). Note that the point
x = −p of discontinuity marks the boundary between the active and inactive sets of
(OP(p)). Hence we conclude that the reason for the nonexistence of the second order
directional derivatives of Q lies in the change of the active set with p.

The preceding argument leads to the following assumption.

Assumption 3.19. There exists a neighborhood N (p0) ⊂ P of the reference
parameter p0 such that for every p ∈ N (p0), strict complementarity holds at the
solution (U(p), Q(p), Z(p)), and the active sets coincide with those of (u0, q0, z0).

Remark 3.20. The previous assumption seems difficult to satisfy in the general
case. However, if the control variable is finite-dimensional and strict complementarity
is assumed at the reference solution (u0, q0, z0), then Assumption 3.19 is satisfied since
the Lagrange multiplier μ(p) = −L′

q(U(p), Q(p), Z(p), p) is continuous with respect
to p and has values in R

n.

We now proceed to our main result concerning second order derivatives of the re-
duced quantity of interest. In the theorem below, we use again () to denote evaluation
at the point (x0, p0).

Theorem 3.21. Under the conditions of Theorem 3.12 and Assumption 3.19,
the reduced quantity of interest i(p) is twice directionally differentiable at p0. The

second order directional derivatives in the directions of δp and δ̂p are given by

(3.40) i′′(p0)(δp, δ̂p) = 〈ṽ, η〉V×V′ + 〈r̃, κ〉Q×Q′ + 〈ỹ, σ〉V×V′

+

⎛⎝U ′(p0)(δp)
Q′(p0)(δp)

δp

⎞⎠� ⎛⎝I ′′uu(q0, u0, p0) I ′′uq(q0, u0, p0) I ′′up(q0, u0, p0)
I ′′qu(q0, u0, p0) I ′′qq(q0, u0, p0) I ′′qp(q0, u0, p0)
I ′′pu(q0, u0, p0) I ′′pq(q0, u0, p0) I ′′pp(q0, u0, p0)

⎞⎠
⎛⎜⎝U ′(p0)(δ̂p)

Q′(p0)(δ̂p)

δ̂p

⎞⎟⎠ .

Here, (η, κ, σ) ∈ V ′ ×Q′ × V ′ is given, as in the unconstrained case, by

(3.41)

⎛⎝η
κ
σ

⎞⎠ =

⎛⎜⎝L′′′
upp()(·, δp, δ̂p)

L′′′
qpp()(·, δp, δ̂p)

L′′′
zpp()(·, δp, δ̂p)

⎞⎟⎠
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Evaluation of sensitivity derivatives

1. Evaluate j′(p0) δp according to (3.36)

2. Compute the sensitivities U ′(p0) δp, Q′(p0) δp, and

Z ′(p0) δp from (3.35)

3. Evaluate j′′(p0)(δp, δ̂p) according to (3.37)

4. Compute the dual quantities (ṽ, r̃, ỹ) from (3.38)

5. Evaluate i′(p0) δp according to (3.39)

6. Compute the sensitivities U ′(p0) δ̂p, Q′(p0) δ̂p, and

Z ′(p0) δ̂p from (3.35)

7. Compute the auxiliary quantities (η, κ, σ) from (??)

8. Evaluate i′′(p0)(δp, δ̂p) according to (3.40).

Algorithm 3.1. Evaluating the first and second order derivatives of the reduced cost function
j and the reduced quantity of interest i.

+

⎛⎜⎝L′′′
upu()(·, δp, U ′(p0)(δ̂p)) + L′′′

upq()(·, δp,Q′(p0)(δ̂p)) + L′′′
upz()(·, δp, Z ′(p0)(δ̂p))

L′′′
qpu()(·, δp, U ′(p0)(δ̂p)) + L′′′

qpq()(·, δp,Q′(p0)(δ̂p)) + L′′′
qpz()(·, δp, Z ′(p0)(δ̂p))

L′′′
zpu()(·, δp, U ′(p0)(δ̂p)) + L′′′

zpq()(·, δp,Q′(p0)(δ̂p))

⎞⎟⎠
+
(
B̃′

u()(U ′(p0)(δ̂p)) + B̃′
q()(Q

′(p0)(δ̂p)) + B̃′
z()(Z

′(p0)(δ̂p)) + B̃′
p()(δ̂p)

)⎛⎝U ′(p0)(δp)
Q′(p0)(δp)
Z ′(p0)(δp)

⎞⎠ .

Proof. The proof uses the same argument as the proof of Theorem 3.6. Note
that in view of Assumption 3.19, B̃(U(p), Q(p), Z(p), p) is totally directionally differ-

entiable with respect to p at p0. In the direction δ̂p, the derivative is

B̃′
u()(U ′(p0)(δ̂p)) + B̃′

q()(Q
′(p0)(δ̂p)) + B̃′

z()(Z
′(p0)(δ̂p)) + B̃′

p()(δ̂p).

Due to the constant active sets, these partial derivatives have the following form:

B̃′
u() =

⎛⎝id
RI

id

⎞⎠B′
u(x0, p0)

⎛⎝id
RI

id

⎞⎠ .

In view of the bounded invertibility of B̃(x0, p0) (see Lemma 3.15), the second order
partial derivatives of (U,Q,Z) at p0 exist by the implicit function theorem. They
satisfy the analogue of (3.16).

We conclude this section by stating Algorithm 3.1 which collects the neces-
sary steps to evaluate the first and second order sensitivity derivatives j′(p0) δp and

j′′(p0)(δp, δ̂p) as well as i′(p0) δp and i′′(p0)(δp, δ̂p) for given δp, δ̂p ∈ P. We suppose
that the original optimization problem (OP(p)) has been solved, e.g., by the primal-
dual active set approach in section 2, for the nominal parameter p0. We denote by
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A± and I the active and inactive sets belonging to the nominal solution (u0, q0) and

adjoint state z0. For the definition of B̃(x0, p0) appearing in (3.35) and (3.38), we
refer the reader to (2.19).

4. Numerical examples. In this section we illustrate our approach using two
examples from different areas. The first example is concerned with a parameter iden-
tification problem for the stationary Navier–Stokes system. No inequality constraints
are present in this problem, and first and second order derivatives of the quantity
of interest are obtained. In the second example, we consider a control-constrained
optimal control problem for an instationary reaction-diffusion system subject to an
infinite-dimensional parameter, which demonstrates the full potential of our approach.

4.1. Example 1. In this section we illustrate our approach using as an example
a parameter identification flow problem without inequality constraints. We consider
the configuration sketched in Figure 4.1.

ΓC

Γ1

Γ0

Γ0

Γ2

Γ3

ξ2

ξ

ξ ξ

1

3 4

Fig. 4.1. Configuration of the system of pipes with measurement points.

The (stationary) flow in this system of pipes around the cylinder ΓC is described
by incompressible Navier–Stokes equations, with unknown viscosity q:

−qΔv + v · ∇v + ∇p = f in Ω,
∇ · v = 0 in Ω,

v = 0 on Γ0 ∪ ΓC ,
v = vin on Γ1,

q ∂v
∂n − pn = πn on Γ2,

q ∂v
∂n − pn = 0 on Γ3.

(4.1)

Here, the state variable u = (v, p) consists of the velocity v = (v1, v2) ∈ H1(Ω)2 and
the pressure p ∈ L2(Ω). The inflow Dirichlet boundary condition on Γ1 is given by
a parabolic inflow vin. The outflow boundary conditions of the Neumann type are
prescribed on Γ2 and Γ3 involving the perturbation parameter π ∈ P = R. (Unlike in
previous sections, we denote the perturbation parameter by π to avoid the confusion
with the pressure p.) Physically, the perturbation parameter π describes the pressure
difference between Γ2 and Γ3; see [11] for a detailed discussion of this type of outflow
boundary condition. The reference parameter chosen is π0 = 0.029.

The aim is to estimate the unknown viscosity q ∈ Q = R using the measurements
of the velocity in four given points; see Figure 4.1. By the least squares approach,
this results in the following parameter identification problem:

Minimize
4∑

i=1

2∑
j=1

(vj(ξi) − v̄ji )
2 + αq2, subject to (4.1).
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Here, v̄ji are the measured values of the components of the velocity at the point ξi
and α is a regularization parameter. For a priori error analysis for finite element
discretization of parameter identification problems with pointwise measurements we
refer the reader to [20].

The sensitivity analysis of previous sections allows us to study the dependence on
the perturbation parameter π. To illustrate this, we define two functionals describing
the possible quantities of interest:

I1(u, q) = q, I2(u, q) = cd(u),

where cd(u) is the drag coefficient on the cylinder ΓC defined as

cd(u) = c0

∫
ΓC

n · σ · d ds,(4.2)

with a chosen direction d = (1, 0), a given constant c0, and the stress tensor σ given
by

σ =
ν

2
(∇v + (∇v)T ) − pI.

For the discretization of the state equation we use conforming finite elements on
a shape-regular quadrilateral mesh Th. The trial and test spaces consist of cellwise
bilinear shape-functions for both pressure and velocities. We add further terms to
the finite element formulation in order to obtain a stable formulation with respect
to both the pressure-velocity coupling and convection dominated flow. This type of
stabilization technique is based on local projections of the pressure first introduced
in [1]. The resulting parameter identification problem is solved by Newton’s method
on the parameter space as described in [3] which is known to be mesh-independent.
The nonlinear state equation is likewise solved by Newton’s method, whereas the
linear subproblems are computed using a standard multigrid algorithm. With these
ingredients, the total numerical cost for the solution of this parameter identification
problem on a given mesh behaves like O(N), where N is the number of degrees of
freedom (dofs) for the state equation.

For the reduced quantities of interest i1(π) and i2(π) we compute the first and
second derivatives using the representations from Theorem 3.6. In Tables 4.1 and 4.2
we collect the values of these derivatives for a sequence of uniformly refined meshes.

In order to verify the computed sensitivity derivatives, we make a comparison
with the derivatives computed by the second order difference quotients. To this end
we choose ε = 10−4 and compute

dil =
il(π0 + ε) − il(π0 − ε)

2 ε
, ddil =

il(π0 + ε) − 2il(π0) + il(π0 − ε)

ε2

by solving the optimization problem additionally for π = π0 − ε and π = π0 + ε. The
results are shown in Table 4.3.

Remark 4.1. The relative errors in Table 4.3 are of the order of the estimated
finite difference truncation error. We therefore consider the correctness of our method
to have been verified to within the accuracy of this test. The same holds for Example 2
and Table 4.4 below.
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Table 4.1

The values of i1(π) and its derivatives on a sequence of uniformly refined meshes.

Cells dofs i1(π) i′1(π) i′′1 (π)

60 270 1.0176e–2 –3.9712e–1 1.4065e–1
240 900 1.0086e–2 –3.9386e–1 –3.2022e–1
960 3240 1.0013e–2 –3.9613e–1 –8.5278e–1
3840 12240 1.0003e–2 –3.9940e–1 –1.0168e–0
15360 47520 1.0000e–2 –4.0030e–1 –1.0601e–0

Table 4.2

The values of i2(π) and its derivatives on a sequence of uniformly refined meshes.

Cells dofs i2(π) i′2(π) i′′2 (π)

60 270 3.9511e–1 –13.4846 9.89988
240 900 3.9106e–1 –13.8759 –4.09824
960 3240 3.9293e–1 –13.8151 16.5239
3840 12240 3.9242e–1 –13.7357 19.3916
15360 47520 3.9235e–1 –13.7144 19.9385

Table 4.3

Comparison of the computed derivatives of il (l = 1, 2) with difference quotients, on the finest
grid.

l i′l dil
dil−i′l

i′l
i′′l ddil

ddil−i′′l
i′′l

1 –0.399403 –0.399404 2.5e–6 –1.01676 –1.01678 2.0e–5
2 –13.73574 –13.73573 –7.3e–7 19.3916 19.3917 5.2e–6

4.2. Example 2. The second example concerns a control-constrained optimal
control problem for an instationary reaction-diffusion model in three spatial dimen-
sions. As the problem setup was described in detail in [9], we will be brief here. The
reaction-diffusion state equation is given by

(c1)t = D1Δc1 − k1c1c2 in Ω × (0, T ),(4.3a)

(c2)t = D2Δc2 − k2c1c2 in Ω × (0, T ),(4.3b)

where ci denotes the concentration of the ith substance, and hence u = (c1, c2) is the
state variable. Ω is a domain in R

3, in this case an annular cylinder (Figure 4.2), and
T is the given final time. The control q enters through the inhomogeneous boundary
conditions

D1
∂c1
∂n

= 0 in ∂Ω × (0, T ),(4.4a)

D2
∂c2
∂n

= q(t)α(t, x) in ∂Ωc × (0, T ),(4.4b)

D2
∂c2
∂n

= 0 in (∂Ω \ ∂Ωc) × (0, T ),(4.4c)

and α is a given shape function on the boundary, modeling a revolving nozzle on the
control surface ∂Ωc, the upper annulus. Initial conditions

c1(0, x) = c10(x) in Ω,(4.5a)

c2(0, x) = c20(x) in Ω(4.5b)
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are also given. The objective to be minimized is

J(c1, c2, q) =
1

2

∫
Ω

α1 |c1(T, ·) − c1T |2 + α2 |c2(T, ·) − c2T |2 dx +
γ

2

∫ T

0

|q − qd|2 dt

+
1

ε
max

{
0,

∫ T

0

q(t) dt− qc

}3

;

i.e., it contains contributions from deviation of the concentrations at the given termi-
nal time T from the desired ones ciT , plus control cost and a term stemming from a
penalization of excessive total control action. We consider here the particular setup
described in [9, Example 1], where substance c1 is to be driven to zero at time T
(i.e., we have α1 = 1 and α2 = 0) from given uniform initial state c10 ≡ 1. This
problem features a number of parameters, and differentiability of optimal solutions
with respect to these parameters was proved in [10]; hence, we may apply the results
of section 3. The nominal as well as the sensitivity and dual problems were solved
using a primal-dual active set strategy; see [9, 15]. The nominal control is depicted
in Figure 4.2. One clearly sees that the upper and lower bounds with values 5 and 1,
respectively, are active in the beginning and end of the time interval. All computa-
tions were carried out using piecewise linear finite elements on a tetrahedral grid with
roughly 3300 vertices, 13200 tetrahedra, and 100 time steps.
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Fig. 4.2. Optimal (unperturbed) control q (left) and computational domain (right).

Since the control variable is infinite-dimensional and control constraints are active
in the solution, the active sets will in general change even under arbitrarily small
perturbations; hence second order derivatives of the reduced quantity of interest i(p)
may not exist (see the discussion before Asumption 3.19).

We choose as quantity of interest the total amount of control action

I(u, q) =

∫ T

0

q(t) dt.

In contrast to the previous example, we consider now an infinite-dimensional param-
eter p = c10, the initial value of the first substance. After discretization on the given
spatial grid, the parameter space has a dimension dimP ≈ 3300. A look at Table 3.1
now reveals the potential of our method: The direct evaluation of the derivative
i′(p0) would have required the solution of 3300 auxiliary linear-quadratic problems,
an unbearable effort. By our dual approach, however, we need to solve only one ad-
ditional such problem (3.38) for the dual quantities. The derivative i′(p0) is shown
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Fig. 4.3. Gradient of the quantity of interest.

in Figure 4.3 as a distributed function on Ω. In the unperturbed setup, the desired
terminal state c1(T ) is everywhere above the desired state c1T ≡ 0. By increasing
the value of the initial state c10, the desired terminal state is even more difficult to
reach, which leads to an increased control effort and thus an increased value of the
quantity of interest. This is reflected by the sign of the function in Figure 4.3, which is
everywhere positive. Moreover, one can identify the region of Ω where perturbations
in the initial state have the greatest impact on the value of the quantity of interest.

In order to check the derivative, we use again a comparison with a difference
quotient in the given direction of δp ≡ 1. Table 4.4 shows the analogue of Table 4.3
with ε = 10−2 for this example.

Table 4.4

Comparison of the computed derivatives of i with difference quotients.

i′ di di−i′

i′

0.222770 0.222463 –1.4e–3

5. Conclusion. In this paper, we considered PDE-constrained optimization
problems with inequality constraints, which depend on a perturbation parameter p.
The differentiability of optimal solutions with respect to this parameter is shown in
Theorem 3.12. This result complements previous findings in [7, 18] and makes precise
the compactness assumptions needed for the proof.

We obtained sensitivity results for a quantity of interest which depends on the op-
timal solution and is different from the cost functional. The main contribution of this
paper is to devise an efficient algorithm to evaluate these sensitivity derivatives. Using
a duality technique, we showed that the numerical cost of evaluating the gradient or
the Hessian of the quantity of interest is only marginally higher than the evaluation
of the gradient or the Hessian of the cost functional. The small additional effort is
spent for the solution of one additional linear-quadratic optimization problem for a
suitable dual quantity. A comparison with a direct approach for the evaluation of the
gradient and the Hessian revealed the tremendous savings of the dual approach espe-
cially in the case of a high-dimenensional parameter space. Two numerical examples
confirmed the correctness of our derivative formulae and illustrated the applicability
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of our results.
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