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ADAPTIVE SPACE-TIME FINITE ELEMENT METHODS FOR
PARABOLIC OPTIMIZATION PROBLEMS∗
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Abstract. In this paper we derive a posteriori error estimates for space-time finite element
discretizations of parabolic optimization problems. The provided error estimates assess the dis-
cretization error with respect to a given quantity of interest and separate the influences of different
parts of the discretization (time, space, and control discretization). This allows us to set up an
efficient adaptive algorithm which successively improves the accuracy of the computed solution by
construction of locally refined meshes for time and space discretizations.
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1. Introduction. In this paper we develop an adaptive algorithm for efficient
solution of time-dependent optimization problems governed by parabolic partial dif-
ferential equations. The optimization problems are formulated in a general setting
including optimal control as well as parameter identification problems. Both, time
and space discretization of the state equation are based on the finite element method
as proposed, e.g., in [10, 11]. In [2] we have shown that this type of discretization
allows for a natural translation of the optimality conditions from the continuous to
the discrete level. This gives rise to exact computation of the derivatives required in
the optimization algorithms on the discrete level.

The main goal of this paper is to derive a posteriori error estimates which assess
the error between the solution of the continuous and the discrete optimization problem
with respect to a given quantity of interest. This quantity of interest may coincide
with the cost functional or express another goal for the computation. In order to
set up an efficient adaptive algorithm we will separate the influences of the time and
space discretizations on the error in the quantity of interest. This allows us to balance
different types of errors and successively to improve the accuracy by construction of
locally refined meshes for time and space discretizations.

The use of adaptive techniques based on a posteriori error estimation is well ac-
cepted in the context of finite element discretization of partial differential equations;
see, e.g., [9, 28, 3]. In the past several years the application of these techniques
has also been investigated for optimization problems governed by partial differential
equations. Energy-type error estimators for the error in the state, control, and adjoint
variable are developed in [20, 21] in the context of distributed elliptic optimal control
problems subject to pointwise control constraints. Recently, these techniques were
also applied in the context of optimal control problems governed by linear parabolic
equations; see [19]. In a recent preprint [24] an anisotropic error estimate is derived
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for the error due to the space discretization of an optimal control problem governed
by the linear heat equation.

However, in many applications, the error in global norms does not provide useful
error bounds for the error in the quantity of physical interest. In [1, 3] a general
concept for a posteriori estimation of the discretization error with respect to the cost
functional in the context of optimal control problems is presented. In papers [4, 5],
this approach is extended to the estimation of the discretization error with respect
to an arbitrary functional depending on both the control and state variables, i.e.,
with respect to a quantity of interest. This allows, among other things, an efficient
treatment of parameter identification and model calibration problems.

The main contribution of this paper is the extension of these approaches to opti-
mization problems governed by parabolic partial differential equations.

In this paper, we consider optimization problems under constraints of (nonlinear)
parabolic differential equations

(1.1)
∂tu + A(q, u) = f

u(0) = u0(q).

Here, the state variable is denoted by u and the control variable by q. Both, the
differential operator A and the initial condition u0 may depend on q. This allows a si-
multaneous treatment of both optimal control and parameter identification problems.
For optimal control problems, the operator A is typically given by

A(q, u) = Ā(u) −B(q),

with a (nonlinear) operator Ā and a (usually linear) control operator B. In parameter
identification problems, the variable q denotes the unknown parameters to be deter-
mined and may enter the operator A in a nonlinear way. The case of initial control is
included via the q-dependent initial condition u0(q).

The target of the optimization is to minimize a given cost functional J(q, u)
subject to the state equation (1.1).

For the numerical solution of this optimization problem the state variable has to
be discretized in space and in time. Moreover, if the control (parameter) space is
infinite dimensional, it has to be discretized too. For fixed time, space, and control
discretizations this leads to a finite dimensional optimization problem. We introduce
σ as a general discretization parameter including the space, time, and control dis-
cretizations and denote the solution of the discrete problem by (qσ, uσ). For this
discrete solution we derive an a posteriori error estimate with respect to the cost
functional J of the following form:

(1.2) J(q, u) − J(qσ, uσ) ≈ ηJk + ηJh + ηJd .

Here, ηJk , ηJh , and ηJd denote the error estimators, which can be evaluated from the
computed discrete solution; ηJk assesses the error due to the time discretization, ηJh
due to the space discretization, and ηJd due to the discretization of the control space.
The structure of the error estimate (1.2) allows for equilibration of different discretiza-
tion errors within an adaptive refinement algorithm to be described in the following
discussion.

For many optimization problems the quantity of physical interest coincides with
the cost functional, which explains the choice of the error measure (1.2). However, in
the case of parameter identification or model calibration problems, the cost functional
is only an instrument for the estimation of the unknown parameters. Therefore, the
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value of the cost functional in the optimum and the corresponding discretization error
are of secondary importance. This motivates error estimation with respect to a given
functional I depending on the state and control (parameter) variables. In this paper
we extend the corresponding results from [4, 5, 29] to parabolic problems and derive
an a posteriori error estimator of the form

I(q, u) − I(qσ, uσ) ≈ ηIk + ηIh + ηId,

where again ηIk and ηIh estimate the temporal and spatial discretization errors and ηId
estimates the discretization error due to the discretization of the control space.

In section 5.2 we will describe an adaptive algorithm based on these error estima-
tors. Within this algorithm the time, space, and control discretizations are separately
refined for efficient reduction of the total error equilibrating different types of the error.
This local refinement relies on the computable representation of the error estimators
as a sum of local contributions (error indicators), see the discussion in section 5.1.

To the authors’ knowledge, this is the first paper describing the a posteriori er-
ror estimation for optimization problems governed by parabolic differential equations
including the separation of different types of the discretization error.

The outline of the paper is as follows: In the next section we describe necessary
optimality conditions for the problem under consideration and sketch the Newton-
type optimization algorithm on the continuous level. This algorithm will be applied
on the discrete level for fixed discretizations within an adaptive refinement procedure.
In section 3 we present the space-time finite element discretization of the optimization
problem. Section 4 is devoted to the derivation of the error estimators in a general
setting. In section 5 we discuss numerical evaluation of these error estimators and the
adaptive algorithm in details. In the last section we present two numerical examples
illustrating the behavior of the proposed methods. The first example deals with
boundary control of the heat equation, whereas the second one is concerned with the
identification of Arrhenius parameters in a simplified gaseous combustion model by
means of point measurements of the concentrations.

2. Optimization. The optimization problems considered in this paper are for-
mulated in the following abstract setting: Let Q be a Hilbert space for the controls
(parameters) with scalar product (·, ·)Q. Moreover, let V and H be Hilbert spaces,
which build together with the dual space V ∗ of V a Gel’fand triple V ↪→ H ↪→ V ∗.
The duality pairing between the Hilbert spaces V and its dual V ∗ is denoted by
〈·, ·〉V ∗×V , and the scalar product in H is denoted by (·, ·)H . A typical choice for
these spaces could be

(2.1) V =
{
v ∈ H1(Ω) v

∣∣
∂ΩD

= 0
}

and H = L2(Ω),

where ∂ΩD denotes the part of the boundary of Ω with prescribed Dirichlet boundary
conditions.

For a time interval (0, T ) we introduce the Hilbert space X := W (0, T ) defined
as

(2.2) W (0, T ) =
{
v v ∈ L2((0, T ), V ) and ∂tv ∈ L2((0, T ), V ∗)

}
.

It is well known that the space X is continuously embedded in C([0, T ], H); see,
e.g., [8]. Furthermore, we use the inner product of L2((0, T ), H) given by

(2.3) (u, v) := (u, v)L2((0,T ),H) =

∫ T

0

(u(t), v(t))H dt

for setting up the weak formulation of the state equation.
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By means of the spatial semilinear form ā : Q×V ×V → R defined for a differential
operator A : Q× V → V ∗ by

ā(q, ū)(ϕ̄) := 〈A(q, ū), ϕ̄〉V ∗×V ,

we can define the semilinear form a(·, ·)(·) on Q×X ×X as

a(q, u)(ϕ) :=

∫ T

0

ā(q, u(t))(ϕ(t)) dt

which is assumed to be three times Gâteaux differentiable and linear in the third
argument.

Remark 2.1. If the control variable q depends on time, this has to be incorporated
by an obvious modification of the definitions of the semilinear forms.

After these preliminaries, we pose the state equation in a weak form: Find for
given control q ∈ Q the state variable u ∈ X such that

(2.4)
(∂tu, ϕ) + a(q, u)(ϕ) = (f, ϕ) ∀ϕ ∈ X,

u(0) = u0(q),

where f ∈ L2((0, T ), V ∗) represents the right-hand side of the state equation and
u0 : Q → H denotes a three times Gâteaux differentiable mapping describing para-
meter-dependent initial conditions. The usage of the inner product (·, ·) defined in
(2.3) for stating the formulation (2.4) is possible since the inner product on H is an
equivalent representation of the duality pairing of V and V ∗ due to the properties of
the Gel’fand triple.

Remark 2.2. There are several sets of assumptions on the nonlinearity in ā(·, ·)(·)
and its dependence on the control variable q allowing the state equation (2.4) to
be well-posed. Typical examples are different semilinear equations, where the form
ā(·, ·)(·) consists of a linear elliptic part and a nonlinear term depending on u and
∇u. Due to the fact that the development of the proposed adaptive algorithm does
not depend on the particular structure of the nonlinearity in ā, we do not specify a
set of assumptions on it but assume that the state equation (2.4) possesses a unique
solution u = S(q) ∈ X for each q ∈ Q.

The cost functional J : Q × X → R is defined using two three times Gâteaux
differentiable functionals J1 : V → R and J2 : H → R by

(2.5) J(q, u) =

∫ T

0

J1(u) dt + J2(u(T )) +
α

2
‖q − q̄‖2

Q,

where the regularization (or cost) term is added which involves α ≥ 0 and a reference
parameter q̄ ∈ Q.

The corresponding optimization problem is formulated as follows:

(2.6) Minimize J(q, u) subject to the state equation (2.4), (q, u) ∈ Q×X.

The question of existence and uniqueness of solutions to such optimization problems
is discussed, e.g., in [18, 13, 27]. Throughout the paper, we assume problem (2.6) to
admit a (locally) unique solution. Moreover, we assume the existence of a neighbor-
hood W ⊂ Q×X of the optimal solution, such that the linearized form ā′u(q, u(t))(·, ·)
considered as a linear operator

ā′u(q, u(t)) : V → V ∗
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is an isomorphism for all (q, u) ∈ W and almost all t ∈ (0, T ). This assumption will
allow all considered linearized and adjoint problems to be well-posed.

Provided the existence of a solution operator S : Q → X for the state equa-
tion (2.4) (see Remark 2.2), we can define the reduced cost functional j : Q → R

by j(q) = J(q, S(q)). This definition allows us to reformulate problem (2.6) as an
unconstrained optimization problem:

(2.7) Minimize j(q), q ∈ Q.

We assume the solution operator S to be two times differentiable; see, e.g., [27] for a
discussion of this issue.

For the reduced optimization problem (2.7) we apply Newton’s method to reach
a control q which satisfies the first order necessary optimality condition

j′(q)(τq) = 0 ∀τq ∈ Q.

Starting with an initial guess q0, the next Newton iterate is obtained by qi+1 =
qi + δq, where the update δq ∈ Q is the solution of the linear problem:

(2.8) j′′(q)(δq, τq) = −j′(q)(τq) ∀τq ∈ Q.

Thus, we need suitable expressions for the first and second derivatives of the reduced
cost functional j. To this end, we introduce the Lagrangian L : Q × X × X → R,
defined as

(2.9) L(q, u, z) = J(q, u) + (f − ∂tu, z) − a(q, u)(z) − (u(0) − u0(q), z(0))H .

With its aid, we obtain the following standard representation of the first derivative
j′(q)(τq).

Theorem 2.1.

• If for given q ∈ Q the state u ∈ X fulfills the state equation

L′
z(q, u, z)(ϕ) = 0 ∀ϕ ∈ X,

with (q, u) ∈ W ⊂ Q×X,
• and if additionally z ∈ X is chosen as a solution of the adjoint state equation

L′
u(q, u, z)(ϕ) = 0 ∀ϕ ∈ X,

then the following expression of the first derivative of the reduced cost functional holds:

j′(q)(τq) = L′
q(q, u, z)(τq)

= α(q − q̄, τq)Q − a′q(q, u)(τq, z) + (u′
0(q)(τq), z(0))H .

Remark 2.3. The optimality system of the considered optimization problem (2.6)
is given by the derivatives of the Lagrangian used in Theorem 2.1 above:

(2.10)

L′
z(q, u, z)(ϕ) = 0 ∀ϕ ∈ X (State equation),

L′
u(q, u, z)(ϕ) = 0 ∀ϕ ∈ X (Adjoint state equation),

L′
q(q, u, z)(ψ) = 0 ∀ψ ∈ Q (Gradient equation).

For the explicit formulation of the dual equation in this setting, see, e.g., [2].
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In the same manner one can gain representations of the second derivatives of j
in terms of the Lagrangian; see, e.g., [2] where two different kinds of expressions are
discussed: Either one can build up the whole Hessian and solve the system (2.8) by an
arbitrary linear solver, or one can just compute matrix-vector products of the Hessian
times a given vector and use this to solve (2.8) by the conjugate gradient method.

The presented Newton’s method will be used to solve discrete optimization prob-
lems arising from discretizing the states and the controls as, e.g., shown in the fol-
lowing section. In practical realizations, Newton’s method has to be combined with
some globalization techniques such as line search or trust region to enlarge its area of
convergence; see, e.g., [23, 7].

Remark 2.4. The solution u of the underlying state equation is typically required
in the whole time interval for the computation of the adjoint solution z. If all data are
stored, the storage grows linearly with respect to the number of time intervals in the
time discretization. For reducing the required memory one can apply checkpointing
techniques; see, e.g., [15, 14]. In [2] we analyze such a strategy in the context of
space-time finite element discretization of parabolic optimization problems.

3. Discretization. In this section, we discuss the discretization of the optimiza-
tion problem (2.6). To this end, we use Galerkin finite element methods in space and
time to discretize the state equation. This allows us to give a natural computable
representation of the discrete gradient and Hessian in the same manner as shown in
section 2 for the continuous problem. The use of exact discrete derivatives is impor-
tant for the convergence of the optimization algorithms. Moreover, our systematic
approach to a posteriori error estimation relies on using the Galerkin-type discretiza-
tions.

The first of the following subsections is devoted to semidiscretization in time by
continuous Galerkin (cG) and discontinuous Galerkin (dG) methods. Section 3.2
deals with the space discretization of the semidiscrete problems arising from time
discretization. For the numerical analysis of these schemes we refer to [10].

The discretization of the control space Q is kept rather abstract by choosing a
finite dimensional subspace Qd ⊂ Q. A possible concretion of this choice is shown in
the numerical examples in section 6. For the variational discretization concept, where
the control variable is not discretized explicitly, we refer to [16]; for a superconvergence
based discretization of the control variable, see [22].

3.1. Time discretization of the states. To define a semidiscretization in time,
let us partition the time interval [0, T ] as

[0, T ] = {0} ∪ I1 ∪ I2 ∪ · · · ∪ IM

with subintervals Im = (tm−1, tm] of size km and time points

0 = t0 < t1 < · · · < tM−1 < tM = T.

We define the discretization parameter k as a piecewise constant function by setting
k
∣∣
Im

= km for m = 1, . . . ,M .

By means of the subintervals Im, we define for r ∈ N0 two semidiscrete spaces
Xr

k and X̃r
k :

Xr
k =

{
vk ∈ C([0, T ], H) vk

∣∣
Im

∈ Pr(Im, V )
}
⊂ X,

X̃r
k =

{
vk ∈ L2((0, T ), V ) vk

∣∣
Im

∈ Pr(Im, V ) and vk(0) ∈ H
}
.
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Here, Pr(Im, V ) denotes the space of polynomials up to order r defined on Im with
values in V . Thus, Xr

k consists of piecewise polynomials which are continuous in time

and will be used as trial space in the cG method, whereas the functions in X̃r
k may

have discontinuities at the edges of the subintervals Im. This space will be used in
what follows as test space in the cG method and as trial and test space in the dG
method.

3.1.1. Continuous Galerkin methods. Using the semidiscrete spaces defined
above, the cG(r) formulation of the state equation can be directly stated as follows:
Find for given control qk ∈ Q a state uk ∈ Xr

k such that

(3.1)
(∂tuk, ϕ) + a(qk, uk)(ϕ) = (f, ϕ) ∀ϕ ∈ X̃r−1

k ,

uk(0) = u0(qk).

Remark 3.1. This equation is assumed to posses a unique solution for each
q ∈ Q, cf. Remark 2.2. In special cases the existence and uniqueness can be shown
by separation of variables and by using the fact that X̃r

k is finite dimensional with
respect to time.

The corresponding semidiscretized optimization problem reads

(3.2) Minimize J(qk, uk) subject to the state equation (3.1), (qk, uk) ∈ Q×Xr
k .

Since the state equation semidiscretized by the cG(r) method has the same form as
in the continuous setting, the corresponding Lagrangian is analogically defined on
Q×Xr

k × X̃r−1
k as

L(qk, uk, zk) = J(qk, uk) + (f − ∂tuk, zk) − a(qk, uk)(zk) − (uk(0) − u0(qk), zk(0))H .

3.1.2. Discontinuous Galerkin methods. To define the dG(r) discretization

we employ the following definition for functions vk ∈ X̃r
k :

v+
k,m := lim

t→0+
vk(tm + t), v−k,m := lim

t→0+
vk(tm − t) = vk(tm), [vk]m := v+

k,m − v−k,m.

Then, the dG(r) semidiscretization of the state equation (2.4) reads as follows:

Find for given control qk ∈ Q a state uk ∈ X̃r
k such that

(3.3)

M∑
m=1

∫
Im

(∂tuk, ϕ)H dt + a(qk, uk)(ϕ) +

M−1∑
m=0

([uk]m, ϕ+
m)H = (f, ϕ) ∀ϕ ∈ X̃r

k ,

u−
k,0 = u0(qk).

This equation is assumed to be well-posed, cf. Remark 3.1.
The semidiscrete optimization problem for the dG(r) time discretization has the

form

(3.4) Minimize J(qk, uk) subject to the state equation (3.3), (qk, uk) ∈ Q× X̃r
k .

Then we pose the Lagrangian L̃ : Q× X̃r
k × X̃r

k → R associated with the dG(r) time
discretization for the state equation as

L̃(qk, uk, zk) = J(qk, uk) + (f, zk) −
M∑

m=1

∫
Im

(∂tuk, zk)H dt

− a(qk, uk)(zk) −
M−1∑
m=0

([uk]m, z+
k,m)H − (u−

k,0 − u0(qk), z
−
k,0)H .
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3.2. Space discretization of the states. In this subsection, we first describe
the finite element discretization in space. To this end, we consider two- or three-
dimensional shape-regular meshes; see, e.g., [6]. A mesh consists of quadrilateral or
hexahedral cells K, which constitute a nonoverlapping cover of the computational
domain Ω ⊂ R

n, n ∈ {2, 3}. The corresponding mesh is denoted by Th = {K}, where
we define the discretization parameter h as a cellwise constant function by setting
h
∣∣
K

= hK with the diameter hK of the cell K.
On the mesh Th we construct a conform finite element space Vh ⊂ V in a standard

way:

V s
h =

{
v ∈ V v

∣∣
K

∈ Qs(K) for K ∈ Th
}
.

Here, Qs(K) consists of shape functions obtained via bi- or trilinear transformations

of polynomials in Q̂s(K̂) defined on the reference cell K̂ = (0, 1)n.
To obtain the fully discretized versions of the time discretized state equations (3.1)

and (3.3), we utilize the space-time finite element spaces

Xr,s
k,h =

{
vkh ∈ C([0, T ], V s

h ) vkh
∣∣
Im

∈ Pr(Im, V s
h )

}
⊂ Xr

k

and

X̃r,s
k,h =

{
vkh ∈ L2((0.T ), V s

h ) vkh
∣∣
Im

∈ Pr(Im, V s
h ) and vkh(0) ∈ V s

h

}
⊂ X̃r

k .

Remark 3.2. By the above definition of the discrete spaces Xr,s
k,h and X̃r,s

k,h, we have
assumed that the spatial discretization is fixed for all time intervals. However, in many
application problems the use of different meshes T m

h for each of the subintervals Im will
lead to more efficient adaptive discretizations. The consideration of such dynamically
changing meshes can be included in the formulation of the dG(r) schemes in a natural
way. The corresponding formulation of the cG(r) method is more involved due to
the continuity requirement in the trial space. The treatment of dynamic meshes
for the forward simulation of parabolic problems within an adaptive algorithm is
discussed in [26]. It will be analyzed in a forthcoming paper in the context of parabolic
optimization problems.

Then, the so-called cG(s)cG(r) discretization of the state equation (2.4) can be
stated as follows: Find for given control qkh ∈ Q a state ukh ∈ Xr,s

k,h such that

(3.5) (∂tukh, ϕ) + a(qkh, ukh)(ϕ) + (ukh(0), ϕ(0))H

= (f, ϕ) + (u0(qkh), ϕ(0))H ∀ϕ ∈ X̃r−1,s
k,h .

The cG(s)dG(r) discretization has the following form: Find for given control qkh ∈ Q

a state ukh ∈ X̃r,s
k,h such that

(3.6)

M∑
m=1

∫
Im

(∂tukh, ϕ)H dt + a(qkh, ukh)(ϕ) +

M−1∑
m=0

([ukh]m, ϕ+
m)H + (u−

kh,0, ϕ
−
0 )H

= (f, ϕ) + (u0(qkh), ϕ−
0 )H ∀ϕ ∈ X̃r,s

k,h.

These fully discretized state equations are assumed to posses unique solutions for each
qkh ∈ Q; see Remark 3.1.
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Thus, the optimization problems with fully discretized states are given by

(3.7)
Minimize J(qkh, ukh) subject to the state equation (3.5), (qkh, ukh) ∈ Q×Xr,s

k,h,

for the cG(s)cG(r) discretization and by

(3.8)

Minimize J(qkh, ukh) subject to the state equation (3.6), (qkh, ukh) ∈ Q× X̃r,s
k,h,

for the cG(s)dG(r) discretization of the state space.

The definition of the Lagrangians L and L̃ for fully discretized states can be
directly transferred from the formulations for semidiscretization in time just by re-
striction of the state spaces Xr

k and X̃r
k to the subspaces Xr,s

k,h and X̃r,s
k,h, respec-

tively. With the aid of these Lagrangians, the derivatives of the reduced functionals
jk(qk) = J(qk, Sk(qk)) and jkh(qkh) = J(qkh, Skh(qkh)) on the different discretization
levels can be expressed in the same manner as described on the continuous level in
Theorem 2.1. Thus, we obtain exact derivatives of the reduced cost functional on the
discrete level; see [2] for details.

Remark 3.3. The dG(r) and cG(r) schemes are known to be time discretization
schemes of order r + 1. The cG(r) schemes lead to a A-stable discretization whereas
the dG(r) schemes are even strongly A-stable.

Remark 3.4. Due to the fact that the test space is discontinuous in time for
both dG(r) and cG(r) discretization, these methods (although globally formulated)
can be interpreted as time-stepping schemes. To illustrate this fact, we present the
time-stepping scheme for the low order cG(s)dG(0) method: For the state equation
we obtain with the abbreviations U0 := ukh(0) and Um := uhk

∣∣
Im

for m = 1, . . . ,M
the following time-stepping formulation:

• m = 0:

(U0, ϕ)H = (u0(q), ϕ)H ∀ϕ ∈ V s
h ,

• m = 1, . . . ,M :

(Um, ϕ)H + kmā(q, Um)(ϕ) = (Um−1, ϕ)H +

∫
Im

(f(t), ϕ)H dt ∀ϕ ∈ V s
h .

This scheme is a variant of the implicit Euler scheme. If the time integrals are
approximated by the box rule, then the resulting scheme is equivalent to the implicit
Euler method. However, a better approximation of these time integrals leads to a
scheme which allows for better error estimates with respect to the required smoothness
of the solution and has advantages in the case of long time integration (T  1); see,
e.g., [12].

The exact computation of the derivatives on the discrete level mentioned above
is not disturbed even by the numerical integration. This can be shown by computing
the schemes for the auxiliary equations by means of the inner product based on the
underlying quadrature rule (e.g., the box rule or the trapezoidal rule).

3.3. Discretization of the controls. As proposed in the beginning of the
current section, the discretization of the control space Q is kept rather abstract. It is
done by choosing a finite dimensional subspace Qd ⊂ Q. Then, the formulation of the
state equation, the optimization problems, and the Lagrangians defined on the fully
discretized state space can be directly transferred to the level with fully discretized
control and state spaces by replacing Q by Qd. The full discrete solutions will be
indicated by the subscript σ which collects the discretization indices k, h, and d.
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4. Derivation of the a posteriori error estimator. In this section, we will
establish a posteriori error estimators for the error arising due to the discretization
of the control and state spaces in terms of the cost functional J and an arbitrary
quantity of interest I.

For this, we first recall a modification of an abstract result from [3] which we will
later use to establish the desired a posteriori error estimators.

Proposition 4.1. Let Y be a function space and L a three times Gâteaux differ-
entiable functional on Y . We seek a stationary point y1 of L on a subspace Y1 ⊂ Y ,
i.e.,

(4.1) L′(y1)(ŷ1) = 0 ∀ŷ1 ∈ Y1.

This equation is approximated by a Galerkin method using a subspace Y2 ⊂ Y . The
approximative problem seeks y2 ∈ Y2 satisfying

(4.2) L′(y2)(ŷ2) = 0 ∀ŷ2 ∈ Y2.

If the continuous solution fulfills additionally

(4.3) L′(y1)(ŷ2) = 0 ∀ŷ2 ∈ Y2,

then we have for arbitrary ŷ2 ∈ Y2 the error representation

(4.4) L(y1) − L(y2) =
1

2
L′(y2)(y1 − ŷ2) + R,

where the remainder term R is given with e := y1 − y2 by

R =
1

2

∫ 1

0

L′′′(y2 + se)(e, e, e) · s · (s− 1) ds.

Proof. Even if the assumptions are weakened compared to the variant in [3], the
proof presented there can be transferred directly.

Remark 4.1. Usually this proposition is formulated for the case Y1 = Y ; then
condition (4.3) is automatically fulfilled.

In what follows, we present the derivation of an error estimator for the fully
discrete optimization problem in the case of dG time discretization only. The cG
time discretization can be treated in a similar way.

4.1. Error estimator for the cost functional. In what follows, we use the
abstract result of Proposition 4.1 for derivation of error estimators in terms of the
cost functional J :

J(q, u) − J(qσ, uσ).

Here, (q, u) ∈ Q×X denotes the continuous optimal solution of (2.6), and (qσ, uσ) =

(qkhd, ukhd) ∈ Qd × X̃r,s
k,h is the optimal solution of the full discretized problem.

To separate the influences of the different discretizations on the discretization
error we are interested in, we split

J(q, u) − J(qσ, uσ) = J(q, u) − J(qk, uk)

+ J(qk, uk) − J(qkh, ukh)

+ J(qkh, ukh) − J(qσ, uσ),
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where (qk, uk) ∈ Q × X̃r
k is the solution of the time discretized problem (3.4) and

(qkh, ukh) ∈ Q× X̃r,s
k,h is the solution of the time and space discretized problem (3.8)

with still undiscretized control space Q.
Theorem 4.1. Let (q, u, z), (qk, uk, zk), (qkh, ukh, zkh), and (qσ, uσ, zσ) be sta-

tionary points of L, resp., L̃ on the different levels of discretization, i.e.,

L′(q, u, z)(q̂, û, ẑ) = L̃′(q, u, z)(q̂, û, ẑ) = 0 ∀(q̂, û, ẑ) ∈ Q×X ×X,

L̃′(qk, uk, zk)(q̂k, ûk, ẑk) = 0 ∀(q̂k, ûk, ẑk) ∈ Q× X̃r
k × X̃r

k ,

L̃′(qkh, ukh, zkh)(q̂kh, ûkh, ẑkh) = 0 ∀(q̂kh, ûkh, ẑkh) ∈ Q× X̃r,s
k,h × X̃r,s

k,h,

L̃′(qσ, uσ, zσ)(q̂σ, ûσ, ẑσ) = 0 ∀(q̂σ, ûσ, ẑσ) ∈ Qd × X̃r,s
k,h × X̃r,s

k,h.

Then there holds for the errors with respect to the cost functional due to the time,
space, and control discretizations

J(q, u) − J(qk, uk) =
1

2
L̃′(qk, uk, zk)(q − q̂k, u− ûk, z − ẑk) + Rk,

J(qk, uk) − J(qkh, ukh) =
1

2
L̃′(qkh, ukh, zkh)(qk − q̂kh, uk − ûkh, zk − ẑkh) + Rh,

J(qkh, ukh) − J(qσ, uσ) =
1

2
L̃′(qσ, uσ, zσ)(qkh − q̂σ, ukh − ûσ, zkh − ẑσ) + Rd.

Here, (q̂k, ûk, ẑk) ∈ Q×X̃r
k ×X̃r

k , (q̂kh, ûkh, ẑkh) ∈ Q×X̃r,s
k,h×X̃r,s

k,h, and (q̂σ, ûσ, ẑσ) ∈
Qd × X̃r,s

k,h × X̃r,s
k,h can be chosen arbitrarily, and the remainder terms Rk, Rh, and

Rd have the same form as given in Proposition 4.1 for L = L̃.
Proof. Since all the used solution pairs are optimal solutions of the optimization

problem on different discretizations levels, we obtain for arbitrary z ∈ X, zk ∈ X̃r
k ,

and zkh, zσ ∈ X̃r,s
k,h

J(q, u) − J(qk, uk) = L̃(q, u, z) − L̃(qk, uk, zk),(4.5a)

J(qk, uk) − J(qkh, ukh) = L̃(qk, uk, zk) − L̃(qkh, ukh, zkh),(4.5b)

J(qkh, ukh) − J(qσ, uσ) = L̃(qkh, ukh, zkh) − L̃(qσ, uσ, zσ),(4.5c)

whereas the identity

J(q, u) = L(q, u, z) = L̃(q, u, z)

follows from the fact that the u ∈ X is continuous, and thus the additional jump
terms in L̃ compared to L vanish.

To apply the abstract error identity (4.4) on the three right-hand sides in (4.5),
we choose the spaces Y1 and Y2 of Proposition 4.1 as

for (4.5a) : Y1 = Q×X ×X, Y2 = Q× X̃r
k × X̃r

k ,

for (4.5b) : Y1 = Q× X̃r
k × X̃r

k , Y2 = Q× X̃r,s
k,h × X̃r,s

k,h,

for (4.5c) : Y1 = Q× X̃r,s
k,h × X̃r,s

k,h, Y2 = Qd × X̃r,s
k,h × X̃r,s

k,h.

Hence, for the second and third pairing we have Y2 ⊂ Y1, since we have X̃r,s
k,h ⊂ X̃r

k

and Qd ⊂ Q. Thus we can choose Y = Y1 in these cases. For the choice of the spaces
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for (4.5a), we have to take into account the fact that X̃r
k �⊂ X. Thus, we choose

Y = Y1 + Y2 and have to ensure condition (4.3):

L̃′(q, u, z)(q̂, û, ẑ) = 0 ∀(q̂, û, ẑ) ∈ Q× X̃r
k × X̃r

k .

Since the solutions u ∈ X and z ∈ X are continuous in time with respect to H, the
additional jump terms in L̃ compared to L vanish, and we may prove equivalently

L′
z(q, u, z)(ẑ) = 0 ∀ẑ ∈ X̃r

k ,

L′
u(q, u, z)(û) = 0 ∀û ∈ X̃r

k ,

L′
q(q, u, z)(q̂) = 0 ∀q̂ ∈ Q.

We demonstrate the details of the construction for the adjoint state equation

L′
u(q, u, z)(û) = 0 ∀û ∈ X̃r

k

which we can write after integration by parts in time as

−
M∑

m=1

∫
Im

(û, ∂tz)H dt + a′u(q, u)(û, z)

+ (û−
M , z(T ))H =

∫
I

J ′
1(u)(û) dt + J ′

2(u(T ))(û−
M ) ∀û ∈ X̃r

k .

Since the continuous adjoint solution z fulfills

(ϕ, z(T ))H = J ′
2(u(T ))(ϕ) ∀ϕ ∈ H,

the terms containing û−
M ∈ V ⊂ H cancel out, and we have to ensure

−
M∑

m=1

∫
Im

(û, ∂tz)H dt + a′u(q, u)(û, z) =

∫
I

J ′
1(u)(û) dt ∀û ∈ X̃r

k .

Since we have that X is dense in L2((0, T ), V ) in regards to the L2((0, T ), V ) norm

and due to X̃r
k ⊂ L2((0, T ), V ), we obtain then directly the stated condition

L′
u(q, u, z)(û) = 0 ∀û ∈ X̃r

k .

The remaining derivatives of L can be treated in a similar matter. The assertion of
the theorem follows then by application of Proposition 4.1.

By means of the residuals of the three equations building the optimality sys-
tem (2.10),

ρ̃u(q, u)(ϕ) := L̃′
z(q, u, z)(ϕ),

ρ̃z(q, u, z)(ϕ) := L̃′
u(q, u, z)(ϕ),

ρ̃q(q, u, z)(ϕ) := L̃′
q(q, u, z)(ϕ),
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the statement of Theorem 4.1 can be rewritten as

J(q, u) − J(qk, uk) ≈
1

2

(
ρ̃u(qk, uk)(z − ẑk) + ρ̃z(qk, uk, zk)(u− ûk)

)
,

(4.6a)

J(qk, uk) − J(qkh, ukh) ≈ 1

2

(
ρ̃u(qkh, ukh)(zk − ẑkh) + ρ̃z(qkh, ukh, zkh)(uk − ûkh)

)
,

(4.6b)

J(qkh, ukh) − J(qσ, uσ) ≈ 1

2
ρ̃q(qσ, uσ, zσ)(qkh − q̂σ).

(4.6c)

Here, we employed the fact that the terms

ρ̃q(qk, uk, zk)(q − q̂k), ρ̃q(qkh, ukh, zkh)(qk − q̂kh),

ρ̃u(qσ, uσ)(zkh − ẑσ), ρ̃z(qσ, uσ, zσ)(ukh − ûσ)

are zero for the choice

q̂k = q ∈ Q, q̂kh = qk ∈ Q,

ẑσ = zkh ∈ X̃r,s
k,h, ûσ = ukh ∈ X̃r,s

k,h.

This is possible since for the errors J(q, u)−J(qk, uk) and J(qk, uk)−J(qkh, ukh) only
the state space is discretized, and for J(qkh, ukh) − J(qσ, uσ) we keep the discrete
state space while discretizing the control space Q.

4.2. Error estimator for an arbitrary functional. We now tend toward an
error estimation of the different types of discretization errors in terms of a given
functional I : Q × X → R describing the quantity of interest. This will be done
using solutions of some auxiliary problems. In order to ensure the solvability of these
problems we assume that the semidiscrete and the full discrete optimal solutions
(qk, uk), (qkh, ukh), and (qσ, uσ) are in the neighborhood W ⊂ Q×X of the optimal
solution (q, u) introduced in section 2.

We define exterior Lagrangians M : [Q×X×X]2 → R and M̃ : [Q×X̃r
k×X̃r

k ]2 → R

as

M(ξ, χ) = I(q, u) + L′(ξ)(χ),

with ξ = (q, u, z), χ = (p, v, y), and

M̃(ξk, χk) = I(qk, uk) + L̃′(ξk)(χk),

with ξk = (qk, uk, zk), χk = (pk, vk, yk).
Now we are in a similar setting to that in the preceding subsection: We split the

total discretization error with respect to I as

I(q, u) − I(qσ, uσ) = I(q, u) − I(qk, uk)

+ I(qk, uk) − I(qkh, ukh)

+ I(qkh, ukh) − I(qσ, uσ)

and obtain the following theorem.
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Theorem 4.2. Let (ξ, χ), (ξk, χk), (ξkh, χkh), and (ξσ, χσ) be stationary points

of M, resp., M̃ on the different levels of discretization, i.e.,

M′(ξ, χ)(ξ̂, χ̂) = M̃′(ξ, χ)(ξ̂, χ̂) = 0 ∀(ξ̂, χ̂) ∈ [Q×X ×X]2,

M̃′(ξk, χk)(ξ̂k, χ̂k) = 0 ∀(ξ̂k, χ̂k) ∈ [Q× X̃r
k × X̃r

k ]2,

M̃′(ξkh, χkh)(ξ̂kh, χ̂kh) = 0 ∀(ξ̂kh, χ̂kh) ∈ [Q× X̃r,s
k,h × X̃r,s

k,h]2,

M̃′(ξσ, χσ)(ξ̂σ, χ̂σ) = 0 ∀(ξ̂σ, χ̂σ) ∈ [Qd × X̃r,s
k,h × X̃r,s

k,h]2.

Then there holds for the errors with respect to the quantity of interest due to the time,
space, and control discretizations

I(q, u) − I(qk, uk) =
1

2
M̃′(ξk, χk)(ξ − ξ̂k, χ− χ̂k) + Rk,

I(qk, uk) − I(qkh, ukh) =
1

2
M̃′(ξkh, χkh)(ξk − ξ̂kh, χk − χ̂kh) + Rh,

I(qkh, ukh) − I(qσ, uσ) =
1

2
M̃′(ξσ, χσ)(ξkh − ξ̂σ, χkh − χ̂σ) + Rd.

Here, (ξ̂k, χ̂k) ∈ [Q × X̃r
k × X̃r

k ]2, (ξ̂kh, χ̂kh) ∈ [Q × X̃r,s
k,h × X̃r,s

k,h]2, and (ξ̂σ, χ̂σ) ∈
[Qd × X̃r,s

k,h × X̃r,s
k,h]2 can be chosen arbitrarily, and the remainder terms Rk, Rh, and

Rd have the same form as given in Proposition 4.1 for L = M̃.
Proof. Due to the optimality of the solution pairings on the different discretization

levels, we have the representations

I(q, u) − I(qk, uk) = M̃(ξ, χ) − M̃(ξk, χk),(4.7a)

I(qk, uk) − I(qkh, ukh) = M̃(ξk, χk) − M̃(ξkh, χkh),(4.7b)

I(qkh, ukh) − I(qσ, uσ) = M̃(ξkh, χkh) − M̃(ξσ, χσ),(4.7c)

where the identity

I(q, u) = M(ξ, χ) = M̃(ξ, χ)

again follows from the fact that the u ∈ X is continuous and thus the additional jump
terms in M̃ compared to M vanish.

Similar to the proof of Theorem 4.1, we choose the spaces Y1 and Y2 for application
of Proposition 4.1 as

for (4.7a) : Y1 = [Q×X ×X]2, Y2 = [Q× X̃r
k × X̃r

k ]2,

for (4.7b) : Y1 = [Q× X̃r
k × X̃r

k ]2, Y2 = [Q× X̃r,s
k,h × X̃r,s

k,h]2,

for (4.7c) : Y1 = [Q× X̃r,s
k,h × X̃r,s

k,h]2, Y2 = [Qd × X̃r,s
k,h × X̃r,s

k,h]2,

and we end up with the stated error representations.
To apply Theorem 4.2 for instance to I(qkh, ukh) − I(qσ, uσ), we have to require

that

M̃′(ξσ, χσ)(ξ̂σ, χ̂σ) = 0 ∀(ξ̂σ, χ̂σ) ∈ [X̃r,s
k,h × X̃r,s

k,h ×Qd]
2.

For solving this system, we have to consider the concrete form of M̃′:

M̃′(ξσ, χσ)(δξσ, δχσ) =

I ′q(qσ, uσ)(δqσ) + I ′u(qσ, uσ)(δuσ) + L̃′(ξσ)(δχσ) + L̃′′(ξσ)(χσ, δξσ).
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Since ξσ = (qσ, uσ, zσ) is the solution of the discrete optimization problem, it fulfills

already L̃′(ξσ)(δχσ) = 0. Thus, the solution triple χσ = (pσ, vσ, yσ) ∈ Qd×X̃r,s
k,h×X̃r,s

k,h

has to fulfill

(4.8) L̃′′(ξσ)(χσ, δξσ) =

− I ′q(qσ, uσ)(δqσ) − I ′u(qσ, uσ)(δuσ) ∀δξσ ∈ Qd × X̃r,s
k,h × X̃r,s

k,h.

Solving this system of equations is—apart from a different right-hand side—equivalent
to the execution of one step of a (reduced) SQP-type method.

After splitting yσ = y
(0)
σ + y

(1)
σ , where y

(0)
σ ∈ X̃r,s

k,h is the solution of

L̃′′
zu(ξσ)(y(0)

σ , ϕ) = −I ′u(qσ, uσ)(ϕ) ∀ϕ ∈ X̃r,s
k,h,

we can rewrite system (4.8) in terms of the full discrete reduced Hessian j′′σ(q) as

j′′σ(qσ)(pσ, δqσ) = −I ′q(qσ, uσ)(δqσ) − L′′
zq(ξσ)(y(0)

σ , δqσ) ∀δqσ ∈ Qd,

where j′′σ(qσ)(pσ, δqσ) can be expressed as

L̃′′
qq(ξσ)(pσ, δqσ) + L̃′′

uq(ξσ)(vσ, δqσ) + L̃′′
zq(ξσ)(y(1)

σ , δqσ).

The computation of j′′σ(qσ)(pσ, ·) requires here the solution of the two auxiliary equa-

tions for vσ ∈ X̃r,s
k,h and y

(1)
σ ∈ X̃r,s

k,h:

L̃′′
uz(ξσ)(vσ, ϕ) = −L̃′′

qz(ξσ)(pσ, ϕ) ∀ϕ ∈ X̃r,s
k,h,

L̃′′
zu(ξσ)(y(1)

σ , ϕ) = −L̃′′
qu(ξσ)(pσ, ϕ) − L̃′′

uu(ξσ)(vσ, ϕ) ∀ϕ ∈ X̃r,s
k,h.

By means of the residuals of the presented equations for p, v, and y, i.e.,

ρ̃v(ξ, p, v)(ϕ) := L̃′′
uz(ξ)(v, ϕ) + L̃′′

qz(ξ)(p, ϕ),

ρ̃y(ξ, p, v, y)(ϕ) := L̃′′
zu(ξ)(y, ϕ) + L̃′′

qu(ξ)(p, ϕ) + L̃′′
uu(ξ)(v, ϕ) + I ′u(q, u)(ϕ),

ρ̃p(ξ, p, v, y)(ϕ) := L̃′′
qq(ξ)(p, ϕ) + L̃′′

uq(ξ)(v, ϕ) + L̃′′
zq(ξ)(y, ϕ) + I ′q(q, u)(ϕ),

and the already defined residuals ρ̃u, ρ̃z, and ρ̃q, the result of Theorem 4.2 can be
expressed as

I(q, u) − I(qk, uk) ≈
1

2

(
ρ̃u(qk, uk)(y − ŷk) + ρ̃z(qk, uk, zk)(v − v̂k)

+ ρ̃v(ξk, pk, vk)(z − ẑk) + ρ̃y(ξk, pk, vk, yk)(u− ûk)
)
,

I(qk, uk) − I(qkh, ukh) ≈ 1

2

(
ρ̃u(qkh, ukh)(yk − ŷkh) + ρ̃z(qkh, ukh, zkh)(vk − v̂kh)

+ ρ̃v(ξkh, pkh, vkh)(zk − ẑkh)

+ ρ̃y(ξkh, pkh, vkh, ykh)(uk − ûkh)
)
,

I(qkh, ukh) − I(qσ, uσ) ≈ 1

2

(
ρ̃q(qσ, uσ, zσ)(pkh − p̂σ) + ρ̃p(ξσ, pσ, vσ, yσ)(qkh − q̂σ)

)
.
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As for the estimator for the error in the cost functional, we employed here the fact
that the terms

ρ̃q(qk, uk, zk)(p− p̂k), ρ̃p(ξk, pk, vk, yk)(q − q̂k),

ρ̃q(qkh, ukh, zkh)(pk − p̂kh), ρ̃p(ξkh, pkh, vkh, ykh)(qk − q̂kh),

ρ̃u(qσ, uσ)(ykh − ŷσ), ρ̃z(qσ, uσ, zσ)(vkh − v̂σ),

ρ̃v(ξσ, pσ, vσ)(zkh − ẑσ), ρ̃y(ξσ, pσ, vσ, yσ)(ukh − ûσ)

vanish if p̂k, q̂k, p̂kh, q̂kh, ŷσ, v̂σ, ẑσ, ûσ are chosen appropriately.
Remark 4.2. As already mentioned in the introduction of this section, we obtain

almost identical results for the time discretization by the cG method to those presented
here. The difference simply consists in the tilde on the variables. The arguments of
the proofs are exactly the same.

Remark 4.3. For the error estimation with respect to the cost functional no
additional equations have to be solved. The error estimation with respect to a given
quantity of interest requires the computation of the auxiliary variables pσ, vσ, yσ.
The additional numerical effort is similar to the execution of one step of the SQP or
Newton’s method.

5. Numerical realization.

5.1. Evaluation of the error estimators. In this subsection, we concretize
the a posteriori error estimator developed in the previous section for the cG(1)cG(1)
and cG(1)dG(0) space-time discretizations on quadrilateral meshes in two space di-
mensions. That is, we consider the combination of cG(1) or dG(0) time discretization
with piecewise bilinear finite elements for the space discretization. As in the previous
section, we will present only the concrete expressions for the dG time discretization;
the cG discretization can be treated in exactly the same manner.

The error estimates presented in the previous section involve interpolation errors
of the time, space, and the control discretizations. We approximate these errors
using interpolations in higher order finite element spaces. To this end, we introduce
linear operators Πh, Πk, and Πd, which will map the computed solutions to the
approximations of the interpolation errors:

z − ẑk ≈ Πkzk, u− ûk ≈ Πkuk,

zk − ẑkh ≈ Πhzkh, uk − ûkh ≈ Πhukh,

qkh − q̂σ ≈ Πdqσ,

y − ŷk ≈ Πkyk, v − v̂k ≈ Πkvk,

yk − ŷkh ≈ Πhykh, vk − v̂kh ≈ Πhvkh,

pkh − p̂σ ≈ Πdpσ.

For the case of cG(1)cG(1) and cG(1)dG(0) discretizations of the state space
considered here, the operators are chosen depending on the test and trial space as

Πk = I
(1)
k − id with I

(1)
k : X̃0

k → X1
k ,

Πk = I
(2)
2k − id with I

(2)
2k : X1

k → X2
2k,

Πh = I
(2)
2h − id with I

(2)
2h :

{
X1,1

k,h → X1,2
k,2h

X̃0,1
k,h → X̃0,2

k,2h.
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(a) Piecewise linear interpolation of a
piecewise constant function.

(b) Piecewise quadratic interpolation
of a piecewise linear function.

Fig. 5.1. Temporal interpolation.

Fig. 5.2. Patched mesh.

The action of the piecewise linear and piecewise quadratic interpolation operators

I
(1)
k and I

(2)
2k in time is depicted in Figure 5.1. The piecewise biquadratic spatial

interpolation I
(2)
2h can be easily computed if the underlying mesh provides a patch

structure. That is, one can always combine four adjacent cells to a macrocell on
which the biquadratic interpolation can be defined. An example of such a patched
mesh is shown in Figure 5.2.

The choice of Πd depends on the discretization of the control space Q. If the
finite dimensional subspaces Qd are constructed similar to the discrete state spaces,
one can directly choose for Πd a modification of the operators Πk and Πh defined
above. If, e.g., the controls q depend only on time and the discretization is done with

piecewise constant polynomials, we can choose Πd = I
(1)
d − id. If the control space

Q is already finite dimensional, which is usually the case in the context of parameter
estimation, it is possible to choose Πd = 0, and thus, the estimator for the error
J(qkh, ukh) − J(qσ, uσ) is zero—as well as this discretization error itself.

In order to make the error representations from the previous section computable,
we replace the residuals linearized on the solution of semidiscretized problems by the
linearization at full discrete solutions.

We finally obtain the following computable a posteriori error estimator for the
cost functional J :

J(q, u) − J(qσ, uσ) ≈ ηJk + ηJh + ηJd ,
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with

ηJk :=
1

2

(
ρ̃u(qσ, uσ)(Πkzσ) + ρ̃z(qσ, uσ, zσ)(Πkuσ)

)
,

ηJh :=
1

2

(
ρ̃u(qσ, uσ)(Πhzσ) + ρ̃z(qσ, uσ, zσ)(Πhuσ)

)
,

ηJd :=
1

2
ρ̃q(qσ, uσ, zσ)(Πdqσ).

For the quantity of interest I the error estimator is given by

I(q, u) − I(qσ, uσ) ≈ ηIk + ηIh + ηId,

with

ηIk :=
1

2

(
ρ̃u(qσ, uσ)(Πkyσ) + ρ̃z(qσ, uσ, zσ)(Πkvσ)

+ ρ̃v(ξσ, vσ, pσ)(Πkzσ) + ρ̃y(ξσ, vσ, yσ, pσ)(Πkuσ)
)
,

ηIh :=
1

2

(
ρ̃u(qσ, uσ)(Πhyσ) + ρ̃z(qσ, uσ, zσ)(Πhvσ)

+ ρ̃v(ξσ, vσ, pσ)(Πhzσ) + ρ̃y(ξσ, vσ, yσ, pσ)(Πhuσ)
)
,

ηId :=
1

2

(
ρ̃q(qσ, uσ, zσ)(Πdpσ) + ρ̃p(ξσ, vσ, yσ, pσ)(Πdqσ)

)
.

To give an impression of the terms that have to be evaluated for the error esti-
mators, we present for the implicit Euler variant of the cG(1)dG(0) discretization the
explicit form of the state residuals ρ̃u(qσ, uσ)(Πkzσ) and ρ̃u(qσ, uσ)(Πhzσ) and the
adjoint state residuals ρ̃z(qσ, uσ, zσ)(Πkuσ) and ρ̃z(qσ, uσ, zσ)(Πhuσ). For simplicity
of notation, we assume here q to be independent on time. Since we evaluate the aris-
ing integrals over time for the residuals weighted with zσ or uσ by the right endpoint

rule and for the residuals weighted with I
(1)
k zσ or I

(1)
k uσ by the trapezoidal rule, we

have to ensure the right-hand side f to be continuous in time, i.e., f ∈ C([0, T ], H).
Then we obtain with the abbreviations U0 := uσ(0), Um := uσ

∣∣
Im

, Z0 := zσ(0), and

Zm = zσ
∣∣
Im

the following parts of the error estimators:

ρ̃u(qσ, uσ)(Πkzσ) =

M∑
m=1

{
(Um − Um−1, Zm − Zm−1)H

+
km
2

ā(qσ, Um)(Zm − Zm−1)

+
km
2

(f(tm−1), Zm−1)H − km
2

(f(tm), Zm)H

}
,

ρ̃z(qσ, uσ, zσ)(Πkuσ) =

M∑
m=1

{km
2

ā′u(qσ, Um)(Um, Zm)

− km
2

ā′u(qσ, Um−1)(Um−1, Zm)

+
km
2

J ′
1(Um−1)(Um−1) −

km
2

J ′
1(Um)(Um)

}
,
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ρ̃u(qσ, uσ)(Πhzσ) =

M∑
m=1

{
km(f(tm), I

(2)
2h Zm − Zm)H

− kmā(qσ, Um)(I
(2)
2h Zm − Zm)

− (Um − Um−1, I
(2)
2h Zm − Zm)H

}
− (U0 − u0(qσ), I

(2)
2h Z0 − Z0)H ,

ρ̃z(qσ, uσ, zσ)(Πhuσ) =

M∑
m=1

{
kmJ ′

1(Um)(I
(2)
2h Um − Um)

− kmā′u(qσ, Um)(I
(2)
2h Um − Um, Zm)

+ (I
(2)
2h Um−1 − Um−1, Zm − Zm−1)H

}
+ J ′

2(UM )(I
(2)
2h UM − UM ) − (I

(2)
2h UM − UM , ZM )H .

For the cG(1)cG(1) discretization the terms that have to be evaluated are very
similar and the evaluation can be treated as presented here for the cG(1)dG(0) dis-
cretization. The presented a posteriori error estimators are directed towards two aims:
assessment of the discretization error and improvement of the accuracy by local re-
finement. For the second aim the information provided by the error estimator has to
be localized to cellwise or nodewise contributions (local error indicators). For details
of the localization procedure we refer, e.g., to [3].

5.2. Adaptive algorithm. The goal of the adaption of the different types of
discretizations has to be the equilibrated reduction of the corresponding discretization
errors. If a given tolerance (TOL) has to be reached, this can be done by refining
each discretization as long as the value of this part of the error estimator is greater
than 1

3TOL. We want to present here a strategy which will equilibrate the different
discretization errors even if no tolerance is given.

The aim of the equilibration algorithm presented in what follows is to obtain
discretization such that

|ηk| ≈ |ηh| ≈ |ηd|

and to keep this property during the further refinement. Here, the estimators ηi
denote the estimators ηJi for the cost functional J or ηIi for the quantity of interest I.

For doing this equilibration, we choose an “equilibration factor” e ≈ 1−5 and pro-
pose the following strategy: We compute a permutation (a, b, c) of the discretization
indices (k, h, d) such that

|ηa| ≥ |ηb| ≥ |ηc|,

and we define the relations

γab :=

∣∣∣∣ηaηb
∣∣∣∣ ≥ 1, γbc :=

∣∣∣∣ηbηc
∣∣∣∣ ≥ 1.

Then we decide by means of Table 5.1 in every repetition of the adaptive refinement
algorithm given by Algorithm 5.1 which discretization shall be refined. For every
discretization to be adapted we select by means of the local error indicators the cells
for refinement. For this purpose there are several strategies available; see, e.g., [3].
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Table 5.1

Equilibration strategy.

Relation between the estimators Discretizations to be refined
γab ≤ e and γbc ≤ e a, b, and c

γbc > e a and b
else (γab > e and γbc ≤ e) a

Algorithm 5.1 (Adaptive Refinement Algorithm).

1: Choose an initial triple of discretizations Tσ0
, σ0 = (k0, h0, d0) for the space-time

discretization of the states and an appropriate discretization of the controls, and
set n = 0.

2: loop
3: Compute the optimal solution pair (qσn

, uσn).
4: Evaluate the a posteriori error estimators ηkn , ηhn

, and ηdn
.

5: if ηkn + ηhn + ηdn ≤ TOL then
6: break
7: else
8: Determine the discretization(s) to be refined by means of Table 5.1.
9: end if

10: Refine Tσn → Tσn+1 depending on the size of ηkn , ηhn , and ηdn to equilibrate
the three discretization errors.

11: Increment n.
12: end loop

6. Numerical examples. This section is devoted to the numerical validation of
the theoretical results presented in the previous sections. This will be done by means
of an optimal control problem with time-dependent boundary control (see section 6.1)
and a parameter estimation problem (see section 6.2).

6.1. Example 1: Neumann boundary control problem. We consider the
linear parabolic state equation on the two-dimensional unit square Ω := (0, 1)2 (see
Figure 6.1) with final time T = 1 given by

(6.1)

∂tu− νΔu + u = f in Ω × (0, T ),

∂nu(x, t) = 0 on Γ0 × (0, T ),

∂nu(x, t) = qi(t) on Γi × (0, T ), i = 1, 2,

u(x, 0) = 0 on Ω.

The control q = (q1, q2) acts as a purely time-dependent boundary control of Neumann
type on the two parts of the boundary denoted by Γ1 and Γ2. Thus, the control space
Q is chosen as [L2(0, T )]2, and the spaces V and H used in the definition of the state
space X are set to V = H1(Ω) and H = L2(Ω).

As the cost functional J to be minimized subject to the state equation, we choose
the functional

J(q, u) :=
1

2

∫ T

0

∫
Ω

(u(x, t) − 1)2 dx dt +
α

2

∫ T

0

{q2
1(t) + q2

2(t)} dt

of the tracking type endowed with a L2(0, T )-regularization.
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Fig. 6.1. Example 1: Computational domain Ω.

For the computations, the right-hand side of f is chosen as

f(x, t) = 10t exp

(
1 − 1

1 − 100‖x− x̃‖2

)
, x̃ =

(
2

3
,
1

2

)
,

and the parameters α and ν are set to

α = 0.1, ν = 0.1.

The discretization of the state space is done here via the cG(1)cG(1) space-time
Galerkin method which is a variant of the Crank–Nicolson scheme. Consequently, the
state is discretized in time by piecewise linear polynomials and the adjoint state by
piecewise constant polynomials. The controls are discretized using piecewise constant
polynomials on a partition of the time interval (0, T ) which has to be at most as fine
as the time discretization of the states.

Remark 6.1. If the discretization of the control is chosen such that the gradient
equation ∫

Γi

z(x, t) dx + αqi(t) = 0, i = 1, 2, t ∈ (0, T ),

can be fulfilled pointwise on the discrete level, the residual ρq of this equation as well
as the error due to discretization of the control space vanish; cf. (4.6c). Thus, it is
only reasonable to discretize the controls at most as fine as the adjoint state.

In Table 6.1 we show the development of the discretization error and the a poste-
riori error estimators during an adaptive run with local refinement of all three types
of discretizations. Here, M denotes the number of time steps, N denotes the number
of nodes in the spatial mesh, and dimQd is the number of degrees of freedom for the
discretization of the control. The effectivity index given in the last column of this
table is defined as usual by

Ieff :=
J(q, u) − J(qσ, uσ)

ηJk + ηJh + ηJd
.

The table also demonstrates the desired equilibration of the different discretization
errors and the sufficient quality of the error estimators. Here and in what follows, the
“exact” values J(q, u) and I(q, u) are obtained approximatively by extrapolation of
the values of these functionals computated on a sequence of fine discretizations.

A comparison of the error J(q, u)−J(qσ, uσ) for the different refinement strategies
is depicted in Figure 6.2:
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Table 6.1

Example 1: Local refinement with equilibration.

M N dimQd ηJk ηJh ηJd ηJk + ηJh + ηJd J(q, u) − J(qσ , uσ) Ieff

64 25 16 −9.7·10−05 2.0·10−03 −8.5·10−04 1.088 · 10−03 −2.567 · 10−04 −0.2360
64 81 20 −1.1·10−04 −1.0·10−03 −3.2·10−04 −1.543 · 10−03 −7.818 · 10−04 0.5065
64 289 20 −1.3·10−04 −4.8·10−04 −3.2·10−04 −9.458 · 10−04 −8.009 · 10−04 0.8468
74 813 32 −4.7·10−05 −2.2·10−05 −1.3·10−04 −2.058 · 10−04 −2.116 · 10−04 1.0285
74 813 48 −4.8·10−05 −2.2·10−05 −7.7·10−05 −1.476 · 10−04 −1.493 · 10−04 1.0109
87 2317 76 −2.7·10−05 1.1·10−05 −2.9·10−05 −4.516 · 10−05 −4.559 · 10−05 1.0094
104 8213 128 −1.8·10−05 2.7·10−06 −1.3·10−05 −2.931 · 10−05 −2.842 · 10−05 0.9696
208 8213 128 −4.3·10−06 2.7·10−06 −1.5·10−05 −1.674 · 10−05 −1.661 · 10−05 0.9923
208 8213 192 −4.2·10−06 2.7·10−06 −7.0·10−06 −8.573 · 10−06 −8.335 · 10−06 0.9722

10−5

10−4

0.001

10000 100000 106 107 108 109 1010

E
rr

or

M · N · dimQd

uniform
uniform equilibration

local equilibration

Fig. 6.2. Example 1: Comparison of different refinement strategies.

• “Uniform”: Here, we apply uniform refinement of all discretizations after each
run of the optimization loop.

• “Uniform equilibration”: Here, we also allow for only uniform refinements
but use the error estimators within the equilibration strategy (Table 5.1) to
decide which discretizations have to be refined.

• “Local equilibration”: Here, we combine local refinement of all discretizations
with the proposed equilibration strategy.

It shows, e.g., that to reach a discretization error of 4 · 10−5 the uniform refinement
needs about 70 times the number of degrees of freedom the fully adaptive refinement
needs.

In Table 6.2 we present the numerical justification for splitting the total discretiza-
tion error in three parts regarding the discretization of time, space, and control: The
table demonstrates the independence of each part of the error estimator on the refine-
ment of the other parts. This feature is especially important to reach a equilibration
of the discretization errors by applying the adaptive refinement algorithm.

6.2. Example 2: Parameter estimation. The state equation for the following
example is taken from [17]. It describes the major part of gaseous combustion under
the low Mach number hypothesis. Under this assumption, the motion of the fluid
becomes independent from temperature and species concentration. Hence, one can
solve the temperature and the species equation alone specifying any solenoidal velocity
field.
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Table 6.2

Example 1: Independence of one part of the error estimator on the refinement of the other parts.

M N dimQd ηJk ηJh ηJd

256 289 16 −4.9104·10−04 −8.6152·10−04

512 289 16 −4.9110·10−04 −8.6232·10−04

1024 289 16 — −4.9111·10−04 −8.6251·10−04

2048 289 16 −4.9111·10−04 −8.6256·10−04

4096 289 16 −4.9112·10−04 −8.6258·10−04

1024 25 16 −3.8360·10−07 −8.7015·10−04

1024 81 16 −4.3463·10−07 −8.5900·10−04

1024 289 16 −4.5039·10−07 — −8.6251·10−04

1024 1089 16 −4.5529·10−07 −8.6398·10−04

1024 4225 16 −4.6096·10−07 −8.6432·10−04

4096 289 16 −2.8171·10−08 −4.9112·10−04

4096 289 32 −3.0332·10−08 −4.8826·10−04

4096 289 64 −3.1317·10−08 −4.8688·10−04 —
4096 289 128 −3.1704·10−08 −4.8651·10−04

4096 289 256 −3.1828·10−08 −4.8642·10−04

Fig. 6.3. Example 2: Computational domain Ω and measurement points pi.

Introducing the dimensionless temperature θ = T−Tunburnt

Tburnt−Tunburnt
, denoting by Y the

species concentration, and assuming constant diffusion coefficients yields

(6.2)
∂tθ − Δθ = ω(Y, θ) in Ω × (0, T ),

∂tY − 1

Le
ΔY = −ω(Y, θ) in Ω × (0, T ),

where the Lewis number Le is the ratio of diffusivity of heat and diffusivity of mass.
We use a simple one-species reaction mechanism governed by an Arrhenius law

ω(Y, θ) =
β2

2Le
Y e

β(θ−1)
1+α(θ−1)

in which an approximation for large activation energy has been employed.
Here, we consider a freely propagating laminar flame described by (6.2) and its

response to a heat absorbing obstacle, a set of cooled parallel rods with rectangular
cross section (cf. Figure 6.3). Thus, the boundary conditions are chosen as

θ = 1 on ΓD × (0, T ),

Y = 0 on ΓD × (0, T ),

∂nθ = 0 on ΓN × (0, T ),

∂nY = 0 on ΓN × (0, T ),

∂nθ = −kθ on ΓR × (0, T ),

∂nY = 0 on ΓR × (0, T ),

where the heat absorption is modeled by Robin boundary conditions on ΓR.
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The initial condition is the analytical solution of a one-dimensional right-traveling
flame in the limit β → ∞ located left of the obstacle:

θ(0, x) =

{
1 for x1 ≤ x̃1

ex̃1−x1 for x1 > x̃1

on Ω,

Y (0, x) =

{
0 for x1 ≤ x̃1

1 − eLe(x̃1−x1) for x1 > x̃1

on Ω.

For the computations, the occurring parameters are set to

Le = 1, β = 10, k = 0.1, x̃1 = 9,

whereas the parameter α occurring in the Arrhenius law will be the objective of the
parameter estimation.

To use the same notations as in the theoretical parts of this article, we define the
pair of solution components u := (θ, Y ) ∈ û + X2 and denote the parameter α to be
estimated by q ∈ Q := R. For definition of the state space X we use the spaces V
and H as given by (2.1). The function û is defined to fulfill the prescribed Dirichlet
data as û

∣∣
ΓD

= (1, 0).
The unknown parameter α is estimated here using information from pointwise

measurements of θ and Y at four measurement points pi ∈ Ω (i = 1, . . . , 4) at final
time T = 60. This parameter identification problem can be formulated as a cost
functional of least squares type:

J(q, u) =
1

2

4∑
i=1

{
(θ(pi, T ) − θ̃i)

2 + (Y (pi, T ) − Ỹi)
2
}
.

The values of artificial measurements θ̃i and Ỹi (i = 1, . . . , 4) are obtained from a
reference solution computed on fine discretizations.

The consideration of point measurements does not fulfill the assumption on the
cost functional in (2.5), since the point evaluation is not bounded as a functional on
H = L2(Ω). Therefore, the point functionals here may be understood as regularized
functionals defined on L2(Ω). For an a priori error estimate of elliptic parameter
identification problems with pointwise measurements, we refer to [25].

For this type of parameter estimation problem one is usually not interested in
reducing the discretization error measured in terms of the cost functional. The focus
is rather on reducing the error in the parameter q to be estimated. Hence, we use the
quantity of interest I given by

I(q, u) = q

and apply the techniques presented in section 4.2 for estimating the discretization
error with respect to I. Since the control space Q in this application is given as
Q = R, it is not necessary to discretize Q. Thus, there is no discretization error due
to the Q-discretization and the a posteriori error estimator consists only of ηIk and ηIh.
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Table 6.3

Example 2: Local refinement with equilibration.

M N ηIk ηIh ηIk + ηIh I(q, u) − I(qkh, ukh) Ieff

512 269 −8.4·10−03 4.3·10−02 3.551 · 10−02 −2.859 · 10−02 −0.8051
512 685 −9.0·10−03 5.2·10−03 −3.778 · 10−03 −4.854 · 10−02 12.8480
690 1871 −3.7·10−03 −1.4·10−02 −1.860 · 10−02 −3.028 · 10−02 1.6280
968 5611 −2.9·10−03 −6.3·10−03 −9.292 · 10−03 −1.104 · 10−02 1.1885
1036 14433 −2.7·10−03 −2.3·10−03 −5.118 · 10−03 −5.441 · 10−03 1.0630
1044 43979 −2.7·10−03 −8.3·10−04 −3.613 · 10−03 −3.588 · 10−03 0.9932

0.01

100000 106 107 108

E
rr

or

M · N

uniform
uniform equilibration

local equilibration

Fig. 6.4. Example 2: Comparison of different refinement strategies.

Fig. 6.5. Example 2: Local refined mesh.

The results of a computation with equilibrated adaption of the space and time
discretization using cG(1)dG(0) are shown in Table 6.3. The discretization parameters
M and N as well as the effectivity index Ieff are defined as in section 6.1.

Similar to section 6.1, we compare in Figure 6.4 the fully adaptive refinement
with equilibration and uniform refinements with and without equilibration. By local
refinement of all involved discretizations we reduce the necessary degrees of freedom
to reach a total error of 10−2 by a factor of 11 compared to a uniform refinement
without equilibration.

Finally, we present in the Figures 6.5 and 6.6 a typical locally refined spatial
mesh and a distribution of the time step size obtained by the space-time-adaptive
refinement.
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Fig. 6.6. Example 2: Visualization of the adaptively determined time step size k.
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