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Abstract

We present a smooth, i.e. differentiable regularization of the projection formula
that occurs in constrained parabolic optimal control problems. We summarize the
optimality conditions in function spaces for unconstrained and control-constrained
problems subject to a class of parabolic partial differential equations. The optimality
conditions are then given by coupled systems of parabolic PDEs. For constrained
problems, a non-smooth projection operator occurs in the optimality conditions.
For this projection operator, we present in detail a regularization method based on
smoothed sign, minimum and maximum functions. For all three cases, i.e (1) the
unconstrained problem, (2) the constrained problem including the projection, and
(3) the regularized projection, we verify that the optimality conditions can be equiv-
alently expressed by an elliptic boundary value problem in the space-time domain.
For this problem and all three cases we discuss existence and uniqueness issues. Mo-
tivated by this elliptic problem, we use a simultaneous space-time discretization for
numerical tests. Here we show how a standard finite element software environment
allows to solve the problem and thus to verify the applicability of this approach
without much implementation effort. We present numerical results for an example
problem.

1 Introduction
Optimal control problems (OCPs) subject to time-dependent partial differential equations
are challenging from the viewpoint of mathematical theory and even more so from numeri-
cal realization. Essentially, there are two different approaches to solve such problems. The
first one is the so-called “Discretize then Optimize” strategy, where the optimal control
problem is transformed into a nonlinear (for our problem class into a quadratic) program-
ming problem by discretization. The second one is the function space based “Optimize
then Discretize” strategy, that is based on developing optimality conditions in function
spaces that are discretized and solved. In this paper, we will focus on the latter approach.

For certain classes of problems it is possible to derive optimality conditions in PDE
form, and the latter strategy then involves solving systems of PDEs. It is straight-forward
to apply specialized PDE software to solve these systems. If the PDE in the optimal
control problems is of parabolic type, the following problem appears: The optimality
system contains a forward and a backward-in-time equation which are coupled by an
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algebraic equation. To solve this system, iterative algorithms are in use. Another approach
is to solve both equations at once, i.e. as a huge system of coupled elliptic equations, cf.
for example [19].

When the problems involve control constraints, a non-differentiable projection opera-
tor additionally occurs in the coupling equation between adjoint state and control. The
resulting non-smooth system can be solved e.g. by semi-smooth Newton methods, cf.
for example [10], [15], and [13, Section 2.5]. Moreover, beginning in the late 1990s, the
concept of smoothing functions was studied in various papers, see e.g. [3], [4], and [5],
where also the terms slanting function and slantly differentiable came in use.

In this paper we regularize the above mentioned projection by a smooth function. We
give the specifications of this regularization and its properties in detail. The idea for
this regularization came from a formal transformation of the optimality system of the
(constrained or unconstrained) OCP: Treating both space and time similarly, it becomes
a biharmonic boundary value problem whose weak form involves an elliptic bilinear form.
This method was also used in [2]. The transformation involves expressing the control by
the adjoint state, as in [11]. Biharmonic equations (with respect only to spatial variables)
are well-known from elasticity problems and can be solved by e. g. finite elements, see
e. g. [8], [20].

This motivates to solve the optimality system as one system of elliptic PDEs including
the use of (optionally adaptive) space-time meshes, cf. also [12] where this equivalence is
used to show that the discrete version of the optimality system is also elliptic.

Having defined the optimality system in function spaces, we use an integrated modeling
and simulation environment based on the finite element method to solve these problems
numerically. This software allows to write the non-differentiable projection formula occur-
ring in constrained problems symbolically as a combination of minimum and maximum
functions. These terms and the whole PDE are differentiated symbolically rather than
numerically when nonlinear solvers are applied. Moreover the smoothed, regularized pro-
jection formula presented here can also easily be implemented using built-in functions.
We point out the work in [18], where we focused on the implementation issues of the
proposed approach.

This paper is organized as follows: After the introduction into the problem class in
Section 2, we show in Section 3 that the optimality system for unconstrained problems is
equivalent to a V -elliptic equation. In Section 4 we consider control constrained problems.
The implementation of the optimality system as a system of elliptic PDEs is explained in
Section 6, that also contains a numerical example illustrating our approach. We end the
paper by a brief summary and outlook.

2 Problem formulation
Let the set Ω be given as a bounded subset of RN , N = 1, 2, with C2,1-boundary Γ, and
let the time interval be given as [0, T ].

We consider the optimal control problem (P) with a tracking type objective functional

J(y, u) :=
1

2

∫∫
Q

(y − yd)
2 + κ(u− ud)

2 dxdt

subject to the parabolic-type PDE (state equation) in weak form, with distributed control
u, given as

yt −∆y + c0y = u in Q := Ω× (0, T )
~n · ∇y = g on Σ := Γ× (0, T )

y(0) = y0 on Ω.

 (2.1)
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Here yd, ud, c0, y0, g are given data, κ > 0 is a regularization parameter, and ~n ·∇y stands
for the outward normal derivative of y. The necessary assumptions on the data will be
given later on. To simplify the theory, let c0 > 0 be a real number.

Moreover we will consider a control problem (Pcon) where additional control constraints
of linear type,

ua(x, t) ≤ u(x, t) ≤ ub(x, t) a.e. in Q (2.2)

with ua, ub ∈ L∞(Q) and ua(x, t) < ub(x, t) for almost all (x, t) ∈ Q, are imposed.

2.1 Weak form of the state equation

We will study the state equation (2.1) in weak form. For this purpose, we use the following
function spaces.

Definition 2.1. We define

H1,0(Q) := L2(0, T ; H1(Ω)),

Hk,1(Q) := L2(0, T ; Hk(Ω)) ∩H1(0, T, L2(Ω)), k = 1, 2.

These spaces are Hilbert spaces. Throughout this paper,

(v, w) :=

∫∫
Q

vw dxdt

denotes the inner product and ‖v‖ := (v, v)
1
2 the induced norm on L2(Q). We use the

same notation for the inner product and norm on the space (L2(Q))N , e.g. for the gradient
∇v of a function v with the required regularity in space, i.e.

(∇v,∇w) :=
N∑

i=1

(
∂v

∂xi

,
∂w

∂xi

)
.

All other norms and inner products are marked explicitly by their associated function
space, e.g. (v, w)L2(Ω) stands for the inner product of L2(Ω) and ‖v‖L∞(Q) for the L∞-
norm over Q etc. On H2,1(Q) we use the inner product

(v, w)H2,1(Q) := (v, w) + (vt, wt) + (∇v,∇w) +
N∑

i,j=1

(
∂2v

∂xi∂xj

,
∂2w

∂xi∂xj

)
and the induced norm given by

‖v‖H2,1(Q) =

(
‖v‖2 + ‖vt‖2 + ‖∇v‖2 +

N∑
i,j=1

∥∥∥∥ d2v

dxidxj

∥∥∥∥2
)1/2

,

cf. the definition of the space W 2l,l
q (QT ) in [16, Chapter 1, §1].

For functions v ∈ H1,1(Q) and fixed t ∈ [0, T ] we will also use the notation v(t) for
the function x 7→ v(x, t), x ∈ Ω, which is in L2(Ω) for t ∈ [0, T ], cf. [16].

Given initial values y0 ∈ L2(Ω), Neumann boundary data g ∈ L2(Σ), and a control
u ∈ L2(Q), we call y ∈ H1,0(Q) a weak solution of (2.1) if it satisfies

−(y, wt) + (∇y,∇w) + c0(y, w) = (u, w) + (g, w)L2(Σ) + (y0, w(0))L2(Ω) (2.3)
for all w ∈ H1,1(Q) with w(T ) = 0 a.e. in Ω.

We now define the problems

min J(y, u) s.t.
{

(2.3) (P)
(2.3) and (2.2) (Pcon)
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2.2 Transformation to homogeneous problems

In this section we transform the OCPs to equivalent homogeneous problems with respect
to the data. If the data in the cost functional satisfy yd ∈ H1,0(Q), ud ∈ L2(Q), then
(y, u) is a solution to (P) if the pair ỹ := y − yd, ũ := u− ud is a solution to

min J̃(ỹ, ũ) :=
1

2

∫∫
Q

ỹ2 + κũ2 dxdt

subject to

−(ỹ, wt) + (∇ỹ,∇w) + c0(ỹ, w) = (ũ, w) + 〈f, w〉 for all w ∈ H1,1(Q), w(T ) = 0 a.e. in Ω.

Here 〈·, ·〉 denotes the pairing between the test space

{w ∈ H1,1(Q), w(T ) = 0}

and its dual space, and f in this dual space is defined by

〈f, w〉 := (g, w)L2(Σ) + (y0, w(0))L2(Ω) + (yd, wt)− (∇yd,∇w)− c0(yd, w) + (ud, w),

w ∈ H1,1(Q), w(T ) = 0.

For our analysis of the control problems, we will need that f ∈ L2(Q). We thus assume
that the data are sufficiently smooth, which for example is the case if

yd ∈ H1,1(Q), ud ∈ L2(Q), y0 ∈ L2(Ω), g ∈ L2(Σ). (2.4)

Omitting the tildes in the notation we arrive at the following equivalent formulations of
the control problems, which we will use from now on:

min J(y, u) :=
1

2

∫∫
Q

y2 + κu2 dxdt s.t.
{

(2.5) (P)
(2.5) and (2.6) (Pcon)

where the weak form of the state equation is

−(y, wt) + (∇y,∇w) + c0(y, w) = (u + f, w) for all w ∈ H1,1(Q),
with w(T ) = 0 a.e. in Ω.

}
(2.5)

and the optional control constraints in (Pcon) are

ũa ≤ u ≤ ũb a.e. in Q (2.6)

for ũa := ua − ud, ũb := ub − ud.

2.3 Existence and uniqueness of weak solutions

In this subsection we recall the known results on existence, uniqueness and regularity of
the state equation.

The following theorem provides the unique weak solvability of the state equation, and
also higher regularity of the solution.
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Theorem 2.2. For any u, f ∈ L2(Q) the state equation (2.5) has a unique weak solution
y ∈ H1,0(Q) ∩ C([0, T ]; L2(Ω)). The solution is also in the space

W (0, T ) := {y ∈ H1,0(Q), yt ∈ L2(0, T ; H1(Ω)∗)}

and satisfies the weak formulation∫ T

0

〈yt(t), w(t)〉H1(Ω)∗,H1(Ω)dt + (∇y,∇w) + c0(y, w) = (u + f, w)

for all w ∈ H1,0(Q),

y(0) = 0 in Ω.

 (2.7)

If N = 1, then y ∈ L∞(Q) if y0 ∈ L∞(Ω) or y ∈ C(Q̄) if y0 ∈ C(Ω̄).

Proof. We refer to [22, Theorems 3.9, 3.12, 3.13, and Lemma 7.12].

Theorem 2.3. Let u ∈ Lq(Q) be given. Then for all q ∈ (2, N + 1) the solution y of
(2.5) is in Lr(Q) with r < q + q/N.

Proof. For the proof, we refer to [21, Theorems 3.1 and 6.7].

The following theorem states even higher regularity of the state.

Theorem 2.4. Assume that Ω ⊂ RN is a bounded domain with sufficiently smooth bound-
ary Γ. If y0 ∈ H1(Ω) and u, f ∈ L2(Q), then the weak solution y of the initial value
problem (2.5) belongs to H2,1(Q) and satisfies

‖y‖H2,1(Q) ≤ c(‖y0‖H1(Ω) + ‖u‖L2(Q) + ‖f‖L2(Q))

with c > 0. The weak formulation of the problem can be equivalently written as

(yt, w) + (∇y,∇w) + c0(y, w) = (u + f, w) for all w ∈ H1,0(Q),
y(0) = 0 a.e. in Ω.

}
(2.8)

Proof. We refer to [7], where this has been proven for a problem with homogeneous
Dirichlet boundary conditions. The proof can be adapted to problems with homogeneous
Neumann boundary conditions, where the essential differences are H2(Ω)-regularity re-
sults for elliptic problems with homogeneous Neumann boundary condition instead of
homogeneous Dirichlet boundary conditions, that can be found for example in [9].

Note that a similar existence and regularity result for the adjoint equation follows di-
rectly from the fact that the adjoint equation can be transformed into an initial-boundary
value problem by considering τ = T − t.

2.4 Optimality system

In the following, we summarize some basic properties of the optimal control problems.
For more detailed information, we refer for example to [17],[21], and [23].

The existence of a unique solution of the problems (P) and (Pcon) can be obtained by
standard arguments.

Theorem 2.5. For all κ > 0, problem (P) has a unique solution u∗ ∈ L2(Q) with as-
sociated optimal state y∗ ∈ W (0, T ). Likewise, problem (Pcon) admits for each κ > 0 a
unique solution u∗ ∈ L2(Q) with associated optimal state y∗ ∈ W (0, T ).
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Proof. The proof is given in [22, Thm. 3.15].

The first order necessary optimality conditions are given in the next theorems. Note
that they are also sufficient for optimality by the convexity of J . For a more detailed
explanation we refer to [22] or [17].

Theorem 2.6. A control u∗ ∈ L2(Q) is the optimal solution of (P) iff the triple (y∗, p, u∗)
with the state y∗ ∈ W (0, T ) and the adjoint state p ∈ W (0, T ) is a weak solution of the
system

y∗t −∆y∗ + c0y
∗ = u∗ + f

−pt −∆p + c0p = y∗

}
in Q

~n · ∇y∗ = 0
~n · ∇p = 0

}
on Σ (2.9)

y∗(0) = 0 in Ω

p(T ) = 0 in Ω

κu∗ + p = 0 in Q. (2.10)

Here we call (y∗, p, u∗) a weak solution if it satisfies (2.7),(2.10), and

−
∫ T

0

〈pt(t), w(t)〉H1(Ω)∗,H1(Ω)dt + (∇p,∇w) + c0(p, w) = (y∗, w) for all w ∈ H1,0(Q)

p(T ) = 0 in Ω.

The adjoint state p is uniquely determined.

Proof. The proof can be found in [22, Lemma 3.17 and Thm. 3.21].

The PDE for p is called adjoint equation, and the coupling between u∗ and p in (2.10)
is often referred to as the gradient equation. It can be used to eliminate the control in the
state equation by setting u∗ = − 1

κ
p. We point out that the regularity result of Theorem

2.4 can be applied to the adjoint equation. A direct consequence is the following regularity
result:

Corollary 2.7. The optimal state y∗, the optimal control u∗, and the adjoint state p
associated with Problem (P) are functions from H2,1(Q). The adjoint equation can be
equivalently re-written as

−(pt, w) + (∇p,∇w) + c0(p, w) = (y∗, w) for all w ∈ H1,0(Q)
p(T ) = 0 in Ω.

}
(2.11)

The adjoint state also satisfies

−(pt, w)− (∆p, w) + c0(p, w) = (y∗, w) for all w ∈ L2(Q). (2.12)

Proof. The last equation is obtained after another application of Green’s formula on the
second term on the left. The boundary term vanishes because of (2.9). Note that no
spatial derivatives of w appear in (2.12), thus it is valid also in L2(Q).

The first order optimality conditions for the constrained problem (Pcon) are formulated
in the next theorem.
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Theorem 2.8. A control u∗ ∈ L2(Q) is the optimal solution of (P) iff the triple (y∗, p, u∗)
with the state y∗ ∈ W (0, T ) and the adjoint state p ∈ W (0, T ) is a weak solution of the
same system as in Theorem 2.6 with (2.10) replaced by

u∗ ∈ Uad := {u ∈ L2(Q) : ua ≤ u ≤ ub a.e. in Q},

(κu∗ + p, u− u∗) ≥ 0 for all u ∈ Uad.

Proof. This is a standard result which also follows from [22, Thm. 3.21].

Note that in this case u∗ cannot be replaced by the adjoint state p in a simple way.
Instead, projection formulas are in use, which we will explain in detail in Section 4.
Nevertheless, we obtain y∗, p∗ ∈ H2,1(Ω), and formulation (2.11) and equation (2.12)
both remain valid.

3 Relation to a biharmonic equation: unconstrained
problems

In this section we show that the adjoint state p is the weak solution of a biharmonic
equation. For minimizing the notational effort we drop the superscript ∗, indicating
optimality, and write e.g. y instead of y∗. We will use the following test space.

Definition 3.1. We define

H̄2,1(Q) :=
{
y ∈ H2,1(Q) : ~n · ∇y = 0 on Γ and y(·, T ) = 0 in Ω

}
.

The space H̄2,1(Q) is an analogon to the space used in [1] or [2] for a problem with ho-
mogeneous Dirichlet boundary conditions. Since H̄2,1(Q) is a closed subspace of H2,1(Q),
it is moreover also a Hilbert space with the inner product of H2,1(Q) defined above. For
future reference, we introduce the following definitions:

Definition 3.2. We define bilinear forms

a0 : H2,1(Q)×H2,1(Q) → R

and
aκ : H2,1(Q)×H2,1(Q) → R

by

a0[v, w] := (vt, wt)− (∆v, wt) + (vt, ∆w) + (∆v, ∆w) + 2c0(∇v,∇w) (3.1)
+c2

0(v, w) + c0(v(0), w(0))L2(Ω),

aκ[v, w] := a0[v, w] +
1

κ
(v, w), (3.2)

as well as operators A0 : H̄2,1(Q) → (H̄2,1(Q))∗ and Aκ : H̄2,1(Q) → (H̄2,1(Q))∗ by

〈A0v, w〉 = a0[v, w], 〈Aκv, w〉 = aκ[v, w] w ∈ H̄2,1(Q).

Theorem 3.3. The adjoint state p related to problem (P ) is a solution of the linear
equation

〈Aκp, w〉 = F (w) for all w ∈ H̄2,1(Q), (3.3)

where F : H2,1(Q) → R is defined by F (w) := (f, w).
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Proof. We take w ∈ H̄2,1(Q) and test (2.12) with wt ∈ H2,0(Q) ⊂ L2(Q). We obtain

−(pt, wt) + (∆p, wt) + c0(p, wt) = (y, wt) = −(yt, w)

where in the last equality we used Green’s formula and the fact that y(0) = w(T ) = 0.
We insert the expression on the left for the time derivative term in the state equation
(2.8) and obtain

(pt, wt)− (∆p, wt)− c0(p, wt) + (∇y,∇w) + c0(y, w) = (u + f, w) (3.4)

Since w ∈ H2,1(Q) we may apply Green’s formula on the fourth term on the left and
obtain

(∇y,∇w) = −(y, ∆w) + (y, ~n · ∇w)L2(Σ) = −(y, ∆w),

where the boundary term vanishes because of our choice of w. To express this term by
the adjoint state we test equation (2.12) with (−∆w) which is in L2(Q). This leads to

(∇y,∇w) = −(y, ∆w) = (pt, ∆w) + (∆p, ∆w)− c0(p, ∆w)

= (pt, ∆w) + (∆p, ∆w) + c0(∇p,∇w),

using Green’s formula and the homogeneous Neumann boundary condition for w in the
last term. The last term on the left-hand side of (3.4) can be expressed by multiplying
equation (2.12) with c0 6= 0. We obtain

c0(y, w) = −c0(pt, w)− c0(∆p, w) + c2
0(p, w)

= c0(p, wt) + c0(p(0), w(0))L2(Ω) + c0(∇p,∇w) + c2
0(p, w).

Again we used Green’s formula for the time derivative and the Laplacian term, but now
the initial value term remains. The end value term vanishes because of the assumption
on the test function w. Summarizing we may rewrite (3.4) as

(pt, wt)− (∆p, wt) + (pt, ∆w) + (∆p, ∆w) + 2c0(∇p,∇w)
+c0(p(0), w(0))L2(Ω) + c2

0(p, w)

}
= (u + f, w) (3.5)

Inserting now the gradient equation (2.10), we obtain (3.3).

Equation (3.3) can be interpreted as the weak formulation of the biharmonic equation

−ptt + ∆2p− 2c0∆p +
(
c2
0 + 1

κ

)
p = f in Q

~n · ∇(∆p) = 0
~n · ∇p = 0

}
on Σ

−pt −∆p + c0p = 0 on Σ0 := Ω× {0}
p = 0 on ΣT := Ω× {T}.


(3.6)

We now show uniqueness of a solution to (3.3), from which we will conclude the
equivalence of the optimality system from Theorem 2.8 to equation (3.3). We will deduce
this from the Lax-Milgram theorem, since similar arguments are used in the following, and
hence we have to show boundedness and ellipticity of the operator Aκ. For this purpose,
we define for y, w ∈ H2,1(Q) the mapping

(y, w)H2,1
∆ (Q) := (y, w) + (yt, wt) + (∇y,∇w) + (∆y, ∆w),
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which clearly is an inner product on H2,1(Q). Consequently,

‖y‖H2,1
∆ (Q) := (y, y)

1/2

H2,1
∆ (Q)

=
(
‖y‖2 + ‖yt‖2 + ‖∇y‖2 + ‖∆y‖2)1/2

is a norm on H2,1(Q). The next lemma shows its equivalence to the natural norm on
H2,1(Q). Thus, the latter is also a Hilbert space with the inner product (·, ·)H2,1

∆ (Q) and
the induced norm ‖ · ‖H2,1

∆ (Q).

Lemma 3.4. The norms ‖ ·‖H2,1(Q) and ‖ ·‖H2,1
∆ (Q) are equivalent on H̄2,1(Q). There exist

constants c1/2 > 0 such that

c1‖y‖H2,1(Q) ≤ ‖y‖H2,1
∆ (Q) ≤ c2‖y‖H2,1(Q)

holds for all y ∈ H̄2,1(Q).

Proof. The second inequality immediately follows from the definitions of the norms
‖ · ‖H2,1(Q) and ‖ · ‖H2,1

∆ (Q), respectively, which results in c2 = 1. To show the first one, let
y∈ H̄2,1(Q) be given and define u := −yt −∆y + y ∈ L2(Q). Then, y satisfies

−yt −∆y + y = u in Q

~n · ∇y = 0 on Σ

y(T ) = 0 in Ω.

in weak sense. By the continuity of the mapping u 7→ y, cf. Theorem 2.4, we obtain

‖y‖2
H2,1(Q) ≤ c‖u‖2 = c ‖yt −∆y + y‖2 ≤ c

(
‖yt‖2 + ‖y‖2 + ‖∆y‖2

)
≤ c‖y‖2

H2,1
∆ (Ω)

,

where we applied Young’s inequality twice and define c1 := 1√
c
.

Lemma 3.5. The operators Aκ and A0 are bounded in H̄2,1(Q), i.e. there exist generic
constants c > 0 such that

〈Aκv, w〉 ≤ c‖v‖H2,1(Q)‖w‖H2,1(Q)

〈A0v, w〉 ≤ c‖v‖H2,1(Q)‖w‖H2,1(Q)

for all v, w ∈ H̄2,1(Q).

Proof. We only prove the first inequality and estimate

(∆v, wt) ≤ ‖∆v‖‖wt‖ ≤ ‖v‖H2,1(Q)‖w‖H2,1(Q)

and

(vt, wt) + (∆v, ∆w) + 2c0(∇v,∇w)
+
(
c2
0 + 1

κ

)
(v, w)

}
≤ max{1, 2c0, c

2
0 + 1/κ}

∣∣∣(v, w)H2,1
∆ (Q)

∣∣∣
≤ max{1, 2c0, c

2
0 + 1/κ}‖v‖H2,1

∆ (Q)‖w‖H2,1
∆ (Q)

≤ c2
2 max{1, 2c0, c

2
0 + 1/κ}‖v‖H2,1(Q)‖w‖H2,1(Q)

where c2 is the constant from Lemma 3.4. Moreover, we find

(v(0), w(0))L2(Ω) ≤ ‖v(0)‖L2(Ω)‖w(0)‖L2(Ω)

≤ ‖v(0)‖H1(Ω)‖w(0)‖H1(Ω)

≤ c3‖v ‖C(0,T ;H1(Ω))‖w ‖C(0,T ;H1(Ω))

≤ c3‖v‖H2,1(Q)‖w‖H2,1(Q),
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where c3 > 0 is a generic constant, by H2,1(Q) ↪→ C([0, T ], H1(Ω)). Now we obtain that

〈Aκv, w〉 ≤
[
2 + c2

2(max{1, 2c0, c
2
0 + 1/κ}) + c0c3

]
‖v‖H2,1(Q)‖w‖H2,1(Q).

The second inequality follows from similar computations.

Lemma 3.6. The operators Aκ and A0 are H̄2,1-elliptic, i.e. there is a constant c > 0
such that

〈Aκv, v〉 ≥ c‖v‖2
H2,1(Q), 〈A0v, v〉 ≥ c‖v‖2

H2,1(Q)

for all v ∈ H̄2,1(Q).

Proof. First note that the unsymmetric terms in the underlying bilinear form aκ vanish,
i.e. we have

−(∆p, vt) + (pt, ∆v) = 0 for p = v.

We choose v ∈ H̄2,1(Q) and estimate the remaining terms:

〈Aκv, v〉 = ‖vt‖2 + ‖∆v‖2 + 2c0‖∇v‖2 +
(
c2
0 + 1

κ

)
‖v‖2 + c0‖v(0)‖2

L2(Ω)

≥ min
{
1, 2c0,

(
c2
0 + 1

κ

)}
‖v‖2

H2,1
∆ (Q)

≥ c‖v‖2
H2,1(Q),

where we used Lemma 3.4 in the last inequality. For A0 the same holds with the term 1
κ

missing.

By the Lemmas 3.5 and 3.6 and the Lax-Milgram Theorem we now deduce:

Corollary 3.7. For all F ∈
(
H̄2,1(Q)

)∗ the equations

〈Aκp, w〉 = F (w) for all w ∈ H̄2,1(Q)

as well as
〈A0p, w〉 = F (w) for all w ∈ H̄2,1(Q)

have a unique solution p ∈ H̄2,1(Q). In both cases, there is a constant c > 0 such that

‖p‖H2,1(Q) ≤ c‖F‖(H̄2,1(Q))
∗ .

Note that the Lax-Milgram theorem also provides the existence of a weak solution,
which is already known from Theorem 3.3. We will, however, need the boundedness and
ellipticity results shown in Lemmas 3.5 and 3.6 in the following. The main result of this
section, namely the equivalence of the weak optimality system and the weak formulation
of the biharmonic equation, is now a direct consequence:

Theorem 3.8. The optimality system from Theorem 2.8 is equivalent to the H̄2,1(Q)-
elliptic biharmonic equation (3.6).

Proof. This follows from Theorem 3.3 and the fact that the weak solution of (3.6) is
unique.
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4 Relation to a biharmonic equation: constrained prob-
lems

In this section, we consider the inequality constrained optimal control problems (Pcon).
We describe the optimality systems with the help of a pointwise projection formula, which
is a source of non-differentiability when solving the optimality systems. This system is
then transformed into one elliptic PDE in the space-time domain similar to (3.6).

4.1 Optimality conditions in terms of projections

Definition 4.1. Let a, b, z ∈ R be given real numbers. We define the projection
π[a,b]{z} := min{b, max(a, z)}.

Definition 4.2. For functions a, b, z ∈ L∞(Q) we define the pointwise projection

IP[a,b]{z} := π[a(x,t),b(x,t)]{z(x, t)}, (x, t) ∈ Q.

Let us state without proof some helpful properties of the projection.

Lemma 4.3. The projection IP[a,b] {z} satisfies

(i) −IP[a,b]{−z} = IP[−b,−a]{z}.

(ii) IP[a,b,]{z} is strongly monotone increasing, i.e. z1 < z2 implies IP[a,b]{z1} ≤ IP[a,b]{z2}.
Moreover, IP[a,b,]{z1} = IP[a,b]{z2} if and only if z1 = z2.

(iii) IP[a,b]{z} is continuous and measurable.

(iv) It is Lipschitz continuous with Lipschitz constant one, i.e. ‖IP[a,b]{z1}−IP[a,b]{z2}‖ ≤
‖z1 − z2‖.

We consider now the homogenized version of the control constrained problem (Pcon).
To formulate optimality conditions, we replace the variational inequality

(κu∗ + p, u− u∗) ≥ 0 for all u ∈ Uad

from Theorem 2.8 by the projection formula

u∗ = IP[ua,ub]

{
−1

κ
p

}
, (4.1)

which follows from the minimum principle, cf. [22]. Then, we can write the optimality
conditions without use of the control, i.e, we find that (u∗, y∗, p∗) solve the system

y∗t −∆y∗ + c0y
∗ = IP[ua,ub]

{
− 1

κ
p
}

+ f
−pt −∆p + c0p = y∗

}
in Q

~n · ∇y∗ = 0
~n · ∇p = 0

}
on Σ

y∗ = 0 on Σ0

p = 0 on ΣT


in weak sense.
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Definition 4.4. We define operators Aπ : H̄2,1(Q) → (H̄2,1(Q))∗ and A : H̄2,1(Q) →
(H̄2,1(Q))∗

〈Aπv, w〉 =

∫∫
Q

IP[−ub,−ua]

{
1

κ
v(x, t)

}
w(x, t) dxdt

A = A0 + Aπ.

Then, by the same arguments as in the last section, we obtain that the following
theorem holds, which we state without proof.

Theorem 4.5. The adjoint state p associated with the constrained problem Pcon is a
solution of the equation

〈Ap, w〉 = 〈f, w〉 ∀w ∈ (H̄2,1(Q))∗. (4.2)

Similar to the unconstrained case, this can be interpreted as p being the weak solution
of

− d2

dt2
p + ∆2p− 2c0∆p + c2

0p− IP[ua,ub]

{
− 1

κ
p
}

= f in Q

~n · ∇(∆p) = 0
~n · ∇p = 0

}
on Σ

− d
dt

p(x, 0)−∆p(x, 0) + c0p(x, 0) = 0 on Σ0

p(x, T ) = 0 on ΣT .


(4.3)

As before, we continue by showing that the solution to (4.2) is unique, in order to obtain
the equivalence of the optimality conditions from Theorem 2.8 to the elliptic equation
(4.2). Hence, we will proceed by using the monotone operator theorem, which again also
provides existence of solutions.

Lemma 4.6. The operator A from Definition 4.4 is strongly monotone, coercive, and
hemi-continuous.

Proof. The proof uses the results of Lemmas 3.6 and 3.5. Let us first show that A is
strongly monotone: From Lemma 3.6 we have

〈A0(v1 − v2), v1 − v2〉 ≥ c‖v1 − v2‖2
H2,1(Q).

By the monotonicity of IP[−ub,−ua]{v} in v we further find(
IP[−ub,−ua]

{
1

κ
v1

}
− IP[−ub,−ua]

{
1

κ
v2

})
(v1 − v2) ≥ 0

for all v1, v2 and all (x, t), hence∫∫
Q

(
IP[−ub,−ua]

{
1

κ
v1(x, t)

}
− IP[−ub,−ua]

{
1

κ
v2(x, t)

})
(v1(x, t)− v2(x, t)) dxdt ≥ 0,

which implies monotonicity of A. To prove coercivity we estimate 〈Aπv, v〉. We observe
first that

IP[−ub,−ua]{
1

κ
v}v =


−uav on Qa := {(x, t) ∈ Q : v > −ua}
−ubv on Qb := {(x, t) ∈ Q : v < −ub}
1
κ
v2 onQ\{Qa ∪Qb}

,

12



hence∫∫
Q

IP[−ub,−ua]

{
1

κ
v(x, t)

}
v(x, t) dxdt =

∫∫
Qa

IP[−ub,−ua]

{
1

κ
v(x, t)

}
v(x, t) dxdt

+

∫∫
Qb

IP[−ub,−ua]

{
1

κ
v(x, t)

}
v(x, t) dxdt +

∫ ∫
Q\Qa∪Qb

IP[−ub,−ua]

{
1

κ
v(x, t)

}
v(x, t) dxdt

= −
∫∫
Qa

ua(x, t)v(x, t) dxdt−
∫∫
Qb

ub(x, t)v(x, t) dxdt +

∫ ∫
Q\Qa∪Qb

1

κ
v2(x, t) dxdt

≥ −
∫∫
Qa

ua(x, t)v(x, t) dxdt−
∫∫
Qb

ub(x, t)v(x, t) dxdt

for all v ∈ H2,1(Q). By Lemma 3.6 we deduce

〈Av, v〉 = 〈A0v, v〉+ 〈Aπv, v〉

≥ c‖v‖2
H2,1(Q) −

∫∫
Qa

|ua(x, t)v(x, t)| dxdt−
∫∫
Qb

|ub(x, t)v(x, t)| dxdt,

= c‖v‖2
H2,1(Q) − ‖uav‖L1(Qa) − ‖ubv‖L1(Qb)

≥ c‖v‖2
H2,1(Q) −

(
‖ua‖L2(Qa) + ‖ub‖L2(Qb)

)
‖v‖L2(Q)

≥ c‖v‖2
H2,1(Q) −

(
‖ua‖L2(Qa) + ‖ub‖L2(Qb)

)
‖v‖H2,1(Q),

which results in

〈Av, v〉
‖v‖H2,1(Q)

≥ c‖v‖H2,1(Q) −
ca,b‖v‖H2,1(Q)

‖v‖H2,1(Q)

with ca,b := ‖ua‖L2(Qa) + ‖ub‖L2(Qb). Therefore, we obtain

〈Av, v〉
‖v‖H2,1(Q)

→∞ if ‖v‖H2,1(Q) →∞.

It remains to validate that A is hemi-continuous. We have to show that φ(s) = 〈A(v +
sw), u〉 is continuous on [0, 1] for all u, v, w ∈ H2,1(Q). By its linearity, A0 is hemi-
continuous. By 〈Aπ(v + tw), u〉 =

∫∫
Q

IP[ua,ub]] {v(x, t) + sw(x, t)}u(x, t) dxdt and by the

continuity of the projection, continuity of Aπ follows immediately, hence A = A0 + Aπ is
hemi-continuous.

Now the next theorem follows from the monotone operator theorem, cf. for example
[24].

Theorem 4.7. For all F ∈
(
H̄2,1(Q)

)∗ the equation

〈Ap, w〉 = F (w) for all w ∈ H̄2,1(Q)

admits a unique solution p ∈ H̄2,1(Q), which is given by the adjoint state p associated
with (Pcon)

As in the unconstrained case we therefore obtain

Corollary 4.8. The optimality system for (Pcon) is equivalent to the H̄2,1(Q)-elliptic
equation (4.2).
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5 Regularization of constrained control problems by
smoothed min/max-functions

In this section, we derive our main result. In order to avoid the nondifferentiable term
in equation (4.2) we replace the projection by a smoothed projection, show existence and
uniqueness of solutions to the corresponding regularized equation, and end this section
with a convergence result for vanishing regularization parameter.

5.1 A regularized projection formula

Let a, b, z ∈ R be given. We consider the identities

max(a, b) =
a + b + |a− b|

2
=

a + b + sign(a− b) · (a− b)

2

and
min(a, b) =

a + b− |a− b|
2

=
a + b− sign(a− b) · (a− b)

2
.

In this formulation, the sign-function is the source of non-differentiability of the max / min
functions. A well known way around this problem is to replace sign by a smooth approxi-
mation, cf. for example the function flsmsign in COMSOL Multiphysics which motivates
the following definition. For ε > 0, let the smoothed sign-function smsign be given by

smsign(z; ε) :=


−1 z < −ε

P(z) z ∈ [−ε, ε]

1 z > ε

, (5.1)

where P is a polynomial of 7th degree that fulfills

P(ε) = 1, P(−ε) = −1, P(k)(±ε) = 0 (5.2)

for k = 1, 2, and further ∫ ε

0

P(z)dz = −
∫ 0

−ε

P(z)dz = ε. (5.3)

Obviously, by this construction we have smsign ∈ C2(R). Note, that this function
fulfills the specifications of flsmsign, cf. help flsmsign, [6]. We also point out [14],
where smooth approximations of the sign function by polynomials have been studied.
Let P(z) =

∑7
k=0 akz

k. To fulfill the conditions(5.2)–(5.3), the coefficients ak are the
solution of the following linear system:

1 ε ε2 ε3 ε4 ε5 ε6 ε7

0 1 ε ε2 ε3 ε4 ε5 ε6

0 0 2 ε ε2 ε3 ε4 ε5

ε ε2

2
ε3

3
ε4

4
ε5

5
ε6

6
ε7

7
ε8

8

1 −ε ε2 −ε3 ε4 −ε5 ε6 −ε7

0 1 −ε ε2 −ε3 ε4 −ε5 ε6

0 0 2 −ε ε2 −ε3 ε4 −ε5

ε − ε2

2
ε3

3
− ε4

4
ε5

5
− ε6

6
ε7

7
− ε8

8




a0

a1
...
a7

 =



1
0
0
ε
−1
0
0
−ε


.

By using e.g. Gauß’ elimination it can be shown that

P(z) = −5

2
ε−7z7 +

63

8
ε−5z5 − 35

4
ε−3z3 +

35

8
ε−1z (5.4)
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is the unique polynomial fulfilling (5.2)–(5.3). The first derivative of P(z) with respect
to z is given by

P ′
(z) = −35

2
ε−7z6 +

315

8
ε−5z4 − 105

4
ε−3z2 +

35

8
ε−1. (5.5)

Let us state some properties of P without proof:

Lemma 5.1. The smoothed sign function P fulfills the following properties:

(i) P is a polynomial with only odd exponents, hence it is an odd function. By its
definition, smsign is also an odd function, i.e. P(−z) = −P(z) and smsign(−z) =
−smsign(z) for all z ∈ R.

(ii) There is only one root (at z = 0) of P in [−ε, ε], which can be verified using
representation (5.4).

(iii) P ′ has four real valued roots at z = ±ε (by definition of P) and z = ±1
2
ε, which

can be shown by representation (5.5).

(iv) In [−ε, ε], P has a maximum at z = 1
2
ε and a minimum at z = −1

2
ε. Their values

are independent of ε: max
|z|≤ε

P(z) = 169
128

, min
|x|≤ε

P(z) = −169
128

, which follows by standard

arguments.

(v) The difference of smsign to the regular sign function is given by

smsign(z; ε)− sign(z) = P(z)− sign(z).

Lemma 5.2. The smoothed signum-function defined in 5.1 converges pointwise towards
sign:

smsign(z; ε)
ε→0−→ sign(z)

for all z in R. Moreover, the approximation error measured in the max-norm is bounded
by one, i.e. it holds

max
z∈R

|smsign(z; ε)− sign(z)| < 1

for all ε > 0.

Proof. Let (εn)n∈N be a sequence with εn → 0 as n →∞ and fn(z) := smsign(z; εn). For
all n ∈ N with εn < |z| we have fn(z) = sign(z), which shows the pointwise convergence.
The second assertion follows from Lemma 5.1(v), which can be written as

smsign(z; ε)− sign(z) =


P(z)− 1 z ∈ (0, ε)

P(z) + 1 z ∈ (−ε, 0))

0 otherwise

and the fact that 0 < P(z) ≤ 169
128

< 2 on (0, ε) and −2 < −169
128

≤ P(z) < 0 on (−ε, 0) due
to Lemma 5.1(iv).

Lemma 5.3. The smoothed signum function converges towards the sign-function in all
Lq-norms with 1 ≤ q < ∞, i.e.

lim
ε→0

(∫
R
|smsign(z, ε)− sign(z)|qdz

)1/q

= 0.

15



Proof. By straightforward calculations and the properties of P summarized in Lemma
5.1(v), we obtain∫

R

|P(z)− sign(z)|dz = 2

ε∫
0

|P(z)− 1|dz ≤ 2

 ε∫
0

|P(z)|dz +

ε∫
0

dz

 = 4ε,

where we used (5.3) in the last equality. By Lemma 5.2 and Hölder’s inequality, we
observe

‖P(z)− sign(z)‖Lq(R) ≤ ‖P(z)− sign (z)‖
1
q

L1(R)‖P(z)− sign(z)‖
1− 1

q

L∞(R) < (4ε)
1
q , (5.6)

for all q ∈ [1,∞).

Definition 5.4. Let a, b, z ∈ R be given real numbers. For ε > 0, we define the smoothed
projection

π
(ε)
[a,b] {z} := smin(b, smax(a, z, ε); ε),

where the smoothed maximum and minimum function smax and smin are given as follows:

smax(a, b; ε) :=
a + b + smsign(a− b; ε)(a− b)

2

smin(a, b; ε) :=
a + b− smsign(a− b; ε)(a− b)

2
.

Definition 5.5. For functions a, b, z ∈ L∞(Q) and a real number ε > 0 we define the
smoothed pointwise projection

IP(ε)
[a,b]{z} := π

(ε)
[a(x,t),b(x,t)]{z(x, t)} ∀(x, t) ∈ Q. (5.7)

Lemma 5.6. Let a, b ∈ L∞(Q). Then smax and smin converge pointwise as well as in
all Lq-norms for q ∈ [1,∞) towards max/min, respectively, while ε → 0.

Proof. Let Q ⊂ R2 be a bounded domain. We first prove convergence for smax in the
L1-norm.

‖smax(a, b; ε)−max(a, b)‖L1(Q)

=
1

2

∫
Q

|a(x, t) + b(x, t) + smsign(a(x, t)− b(x, t); ε) · (a(x, t)− b(x, t))

−a(x, t) + b(x, t) + sign(a(x, t)− b(x, t)) · (a(x, t)− b(x, t))| dxdt

=
1

2

∫
Q

|(smsign(a(x, t)− b(x, t); ε)− sign(a(x, t)− b(x, t))) · (a(x, t)− b(x, t))| dxdt

≤1

2
‖(smsign(a− b; ε)− sign(a− b))‖L1(Q) ‖a− b‖L∞(Q).

Hence, with Lemma 5.1(v) as well as estimate (5.6) with q = 1 we obtain that that

‖smax(a, b; ε)−max(a, b)‖L1(Q) ≤ 4ε‖a− b‖L∞(Q). (5.8)

Obviously, this yields the desired convergence for ε tending to zero in the L1-norm. Sim-
ilarly to the calculations above, we observe that

‖smax(a, b; ε)−max(a, b)‖|L∞(Q) ≤
1

2
‖(smsign(a− b; ε)− sign(a− b))‖L∞(Q)‖a− b‖L∞(Q).

(5.9)
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By Lemma 5.2, we have ‖(smsign(a− b; ε)− sign(a− b))‖L∞(Q) ≤ 1, hence (5.9) yields

‖smax(a, b; ε)−max(a, b)‖|L∞(Q) ≤
1

2
‖a− b‖L∞(Q). (5.10)

Consider now q > 1 and observe that

‖smax(a, b; ε)−max(a, b)‖Lq(Q) ≤

‖smax(a, b; ε)−max(a, b)‖
1
q

L1(Q)‖smax(a, b; ε)−max(a, b)‖
1− 1

q

L∞(Q)

≤
(
4ε‖a− b‖L∞(Q)

) 1
q

(
1

2
‖a− b‖L∞(Q)

)1− 1
q

by (5.11) and (5.10). This proves the desired convergence in all Lq-norms. To show
pointwise convergence, let εn be a sequence with εn → 0 as n →∞. Then, there is an nε

such that εn < ‖a− b‖L∞(Q) for all ε < εn, which implies

1

2
‖smsign(a− b; εn)− sign(a− b)‖L∞(Q) = 0

for all n > nε. Then formula (5.9) shows the pointwise convergence smax(a, b; ε) →
max(a, b) as ε → 0.

Lemma 5.7. For δ := min(ub − ua) > 0, there exists ε0 = ε0(δ) such that the smoothed
projection π

(ε)
[a,b]{z} fulfills the following properties for all ε ≤ ε0:

(i)

π
(ε)
[a,b] {z} =



a z < a− ε

smax(a, z, ε) |z − a| ≤ ε

smin(b, z, ε) |z − b| ≤ ε

z z ∈ [a + ε, b− ε]

b z > b + ε

,

(ii) π
(ε)
[a,b] {z} is uniformly bounded. There exists a constant L > 0 independent of ε such

that
|π(ε)

[a,b] {z1} − π
(ε)
[a,b] {z2} | ≤ L|z1 − z2|

for all z1, z2 ∈ R.

(iii) For c0 sufficiently large, the function z 7→ c20
2
z + π

(ε)
[a,b] {z} is strongly monotone

increasing.

Proof. To prove the first item, we point out that for a− ε ≤ z ≤ a + ε we obtain

smax(a, z, ε) =
1

2
(2a + z − a + smsign(a− z, ε)(a− z)) ≤

(
a + ε +

169

128
ε

)
≤ b− ε

for ε ≤ ε0 := 256
553

δ by Lemma 5.1. To prove boundedness, consider as before

smax(a, z, ε) =
1

2
(2a + z − a + smsign(a− z, ε)(a− z)) ≥

(
a− ε− 169

128
ε

)
≥ a− 297

256
ε0.
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A similar estimate can be shown for the upper bound. The real-valued function smsign
is differentiable with respect to z with derivative

d

dz
smsign(z; ε) =


0 z < −ε

P ′(z) z ∈ [−ε, ε]

0 z > ε

.

With representation (5.5) it can be verified that | d
dz
smsign(a− z, ε)(a− z)| ≤ ε ≤ ε0.

Since additionally smsign is bounded by 169
128

we arrive at∣∣∣∣ d

dz
smax(a, z; ε)

∣∣∣∣ =
1

2
|1− d

dz
smsign(a−z, ε)(a−z)−smsign(a−z, ε)| ≤ 1

2

(
1 + ε0 +

169

128

)
≤ L1.

By the same arguments, we obtain an estimate for | d
dz
smin(a, z; ε)| ≤ L2, with L2 > 1.

This is sufficient to prove | d
dz

π
(ε)
[a,b] {z} | ≤ L, which implies Lipschitz continuity of the

smoothed projection function. It remains to prove the desired monotonicity. By similar
calculations as above, we obtain

d

dz

(
c2
0

2
z + π

(ε)
[a,b] {z}

)
≥ c2

0

2
+

1

2

(
1− ε− 169

128

)
.

For c0 large enough, the right-hand-side is positive and we obtain the claimed monotonic-
ity.

Theorem 5.8. Let a, b ∈ L∞(Q) be given functions. The smoothed projection IP(ε)
[a,b]

converges towards IP[a,b] in all Lp-norms with 1 ≤ p < ∞ as ε → 0 .

Proof. By pointwise convergence of smsign we have IP(ε)
[a,b] {z} → IP[a,b] {z} almost every-

where in Q. From the boundedness of smax/smin we can conclude for a, b ∈ R

|smax(a, b; ε)| = 1

2
|a + b− smsign(a− b; ε)(a− b)| < 3

2
(|a|+ |b|)

|smin(a, b; ε)| = 1

2
|a + b + smsign(a− b; ε)(a− b)| < 3

2
(|a|+ |b|)

We define now for a, b, z ∈ L∞(Q) by

g(a, b, z) :=
3

2

(
‖a‖L∞(Q) +

3

2

(
‖b‖L∞(Q) + ‖z‖L∞(Q)

))
a measurable dominant for IP(ε)

[a,b], i.e.

IP(ε)
[a,b] {z} ≤ g(a, b, z)

for all ε > 0 and for all x ∈ Q. Further by a, b, z ∈ L∞(Q), we have g ∈ L∞(Q).
Lebesgue’s theorem now provides

lim
ε→0

∥∥∥IP(ε)
[a,b]{z} − IP[a,b]{z}

∥∥∥
Lp(Q)

= 0

for any p ∈ (1,∞).
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5.2 Regularized problem formulation

Now, we replace the projection IP[ua,ub] in (4.2) by the regularized projection IP(ε)
[ua,ub]

. Our
aim for the remainder of this section is to analyze the resulting regularized problem with
respect to existence and uniqueness of a weak solution, as well as to prove convergence
of the regularized solution to the unregularized solution for regularization parameters ε
tending to zero.

Definition 5.9. As an analogon to Definition 4.4, we define operators Aε
π : H̄2,1(Q) →

(H̄2,1(Q))∗ and Aε : H̄2,1(Q) → (H̄2,1(Q))∗

〈Aε
πv, w〉 =

∫∫
Q

IP(ε)
[−ub,−ua]

{
1

κ
v(x, t)

}
w(x, t) dxdt

Aε = A0 + Aε
π

for w ∈ H̄2,1(Q).

Lemma 5.10. For all c0 sufficiently large and ε sufficiently small, the operator Aε from
Definition (5.9) is strongly monotone, coercive, and hemi-continuous.

Proof. The monotonicity of z 7→ c20
2
z+π

(ε)
[a,b]{z} for c0 sufficiently large follows from Lemma

5.7 and implies monotonicity of Aε. Now note that Aε can be expressed as

Aε = A + (Aε
π − Aπ).

Moreover, we already know from Lemma 4.6 that

〈Av, v〉 ≥ c‖v‖2
H2,1(Q) −

(
‖ua‖L2(Qa) + ‖ub‖L2(Qb)

)
‖v‖L2(Q)

≥ c‖v‖2
H2,1(Q) −

(
‖ua‖L2(Qa) + ‖ub‖L2(Qb)

)
‖v‖H2,1(Q), (5.11)

which guarantees

〈Av, v〉
‖v‖H2,1(Q)

≥ c‖v‖H2,1(Q) − ca,b

with ca,b := ‖ua‖L2(Qa) + ‖ub‖L2(Qb), cf. Lemma 4.6. For 〈Aε
πv − Aπv, v〉 we obtain

〈Aε
πv − Aπv, v〉 ≥ −‖Aε

πv − Aπv‖ ‖v‖L2(Q) ≥ −‖Aε
πv − Aπv‖ ‖v‖H2,1(Q),

hence from (5.11) we obtain

〈Aεv, v〉
‖v‖H2,1(Q)

≥ c‖v‖H2,1(Q) − c̃a,b,

where c̃a,b := ca,b + ‖Aε
πv − Aπv‖, implying that A(ε) is coercive. The semicontinuity of

Aε follows as in Lemma 4.6.

Now, the solvability of the corresponding regularized equation can be shown with the
monotone-operator theorem as before.

Theorem 5.11. For c0 sufficiently large and ε sufficiently small, the equation

〈Aεv, w〉 = F (w) (5.12)

has a unique weak solution pε ∈ H̄2,1(Q) for all F ∈
(
H̄2,1(Q)

)∗.
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Proof. With Lemma 5.10, this follows by the monotone operator theorem.

Let us mention here that (5.12) can be interpreted as the weak formulation of an
equation similar to (4.3) when replacing IP[ua,ub]

{
− 1

κ

}
by IP(ε)

[ua,ub]

{
− 1

κ

}
. It remains to

show that the solution pε to (5.12) converges towards the solution p of (4.2).

Theorem 5.12. Let (εn)n∈N be a sequence of positive real numbers converging to zero.
Then the sequence of (pε

n) of associated solutions of (5.12) converges strongly in H̄2,1(Q)
to p, where p is the solution of (4.2).

Proof. By Theorem 5.11 we obtain for each εn > 0 the existence of a unique solution
pεn ∈ H̄2,1(Q) of equation (5.12), which fulfills the linear equation

〈A0p
εn , w〉 = 〈−Aε

πpεn , w〉+ F (w) = (zεn , w) for all w ∈ H̄2,1(Q), (5.13)

where

zεn := IP(εn)
[ua,ub]

{
−1

κ
pεn

}
+ f.

By Lemma 5.7(ii), the sequence {zεn}n∈N is uniformly bounded in L∞(Q). Linearity of
A0 and the Lax-Milgram theorem yields

‖pεn‖H̄2,1(Q) ≤ c‖zεn‖H̄2,1(Q)∗ ≤ c‖zεn‖L2(Q) ≤ c‖zεn‖L∞(Q) ≤ c,

where c is a generic constant and we used the continuous embedding H̄2,1(Q) ↪→ L2(Q),
which is valid inversely for their dual spaces.

Hence, there exists a subsequence, here denoted again by pεn , converging weakly in
H̄2,1(Q) and strongly in L2(Q) to some p∗ ∈ H̄2,1(Q). We now define δp∗ = p − p∗ and
δpεn = p − pεn and subtract the regularized equation (5.13) from the unregularized one,
(4.2). We obtain

〈A0δp
εn , δp∗〉 = 〈Aεn

π pεn − Aπp, δp∗〉
= 〈Aεn

π pεn − Aεn
π p∗ + Aεn

π p∗ − Aπp∗ + Aπp∗ − Aπp, δp∗〉
≤ 〈Aεn

π pεn − Aεn
π p∗ + Aεn

π p∗ − Aπp∗, δp∗〉,
(5.14)

where the last inequality follows from the monotonicity of Aπ. From Lemma 5.7(ii) and
the fact that pεn → p∗ in L2(Q) for εn tending to zero we know

〈Aεn
π pεn − Aεn

π p∗, δp∗〉 ≤
∥∥∥∥IP(εn)

{
−1

κ
p∗
}
− IP(εn)

{
−1

κ
pεn

}∥∥∥∥ ‖δp∗‖ ≤ c ‖p∗ − pεn‖ → 0,

as εn tends to zero, and Theorem 5.8 guarantees

〈Aεn
π p∗ − Aπp∗, δp∗〉 ≤

∥∥∥∥IP(εn)

{
−1

κ
p∗
}
− IP

{
−1

κ
p∗
}∥∥∥∥ ‖δp∗‖ → 0,

as εn → 0, hence, with the ellipticity of A0, passing εn to 0 in (5.14) yields

0 ≥ 〈A0δp
∗, δp∗〉 ≥ 0,

which yields the assertion.

As a direct consequence of the last theorem, we obtain the following results on con-
vergence of controls.
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Corollary 5.13. The sequence or regularized optimal controls {uεn}n∈N, where

uεn := IP(εn)
[ua,ub]

{
−1

κ
pεn

}
converges to u∗ as n →∞.

Concluding, we point out that the proposed regularization avoids the presence of non-
differentiable terms in the optimality system associated with optimal control problems
with bounds on the control. The regularized problems admit unique solutions that con-
verge to the unregularized ones for vanishing regularization parameters. In order to solve
the optimal control problems, it is either possible to solve equation (5.12), or the corre-
sponding system for (uε, yε, pε). We choose the latter approach in the next section, were
we illustrate the method with the help of a numerical example.

6 Numerical experiments

6.1 Implementation

We now return to the original problem defined in Section 2. In Section 1 we stated the
equivalence of the linear-parabolic PDE in a general setting to a homogenized parabolic
PDE. This led to a homogeneous optimality system which is equivalent to a H2,1(Q)-
elliptic equation. Altogether, the H̄2,1(Q)-ellipticity devolves to the optimality system of
the original problem.

The presence of nontrivial data yd, ud, y0, and g changes the optimality systems
previously derived in Section 2 when considering the inhomogeneous problem formulation.
The gradient equation now reads

κ(u∗ − ud) + p = 0 in Q

in the unconstrained case. In the presence of control constraints, ud appears in the
variational inequality: (2.8) changes to

(κ(u∗ − ud) + p, u− u∗) ≥ 0 for all u ∈ Uad(Q).

Now, we have to replace the control u in the state equation by u = − 1
κ
p + ud, or, in

the presence of control constraints, by the modified projection IP[ua,ub]{− 1
κ
p + ud} or by

the regularized projection formula IP(ε)
[ua,ub]

{− 1
κ
p + ud}, respectively. The adjoint equation

changes to
− d

dt
p−∆p + a0p = y∗ − yd in Q

~n · ∇p = 0 on Σ
p(T ) = 0 on ΣT

By evaluating the state equation for t = 0 we obtain the boundary condition y = y0

on Σ0 for the state equation and by evaluating the adjoint equation we obtain

y = y0
1
κ
p−∆y∗ + d

dt
y∗ + a0y

∗ − ud = 0

}
on Σ0

At t = T we have
p = 0

−∆p + a0p− d
dt

p + yd − y∗ = 0

}
on ΣT
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To determine the optimal control, we finally use the identity u∗ = − 1
κ
p + ud in Q or, in

the control constrained case u∗ = IP[ua,ub]

{
− 1

κ
p + ud

}
.

For solving this nonlinear system by Newton’s method we replace IP by the smoothed
projection IPε. For that, we need the derivative of IPε, which can directly be computed
using the definition (5.7).

In our computations we choose another approach. Some software packages offer the
possibility of defining systems of PDEs symbolically, i.e. the equations can be defined in
terms of differential operators instead of in terms of coefficients. Such software packages
usually also provide a number of pre-defined functions and operators like polynomials,
trigonometric functions, etc., as well as signum, maximum, and minimum functions.

For our computations, we choose COMSOL Multiphysics, where we are mainly inter-
ested in using some of the programs build-in tools like adaptivity and multigrid solvers.
Further, COMSOL provides a smoothed signum function flsmsign, that is very similar
to our choice in Section 5. The only difference is that in the specification of flsmsign it
is defined as piecewise polynomial of seventh degree, whereas we define smsign as poly-
nomial on (−ε, ε)), cf. the definition in Section 5. The difference between flsmsign and
smsign will not change the theory.

We point out that COMSOL Multiphysics uses by default the smoothed min/max
functions but without user-control of the smoothing parameter ε. In our computations
we use the smoothed projection formula (5.7) by using flsmsign, where the parameter ε
remains in the hands of the user. For details on the implementation of optimality systems
in COMSOL Multiphysics we refer to [18]. Note, however, that the described approach is
not limited to special software.

6.2 Example

As an example we consider a model problem with inequality constraints on the control.

min J(y, u) =
1

2

∫∫
Q

(y − yd)
2 + κ(u− ud)

2dxdt

while (y, u) fulfills the parabolic PDE

yt(x, t)−∆y(x, t) = u(x, t) in Q

~n · ∇y(x, t) = 0 on Σ

y(x, 0) = 0 on Ω.

and the constraints on the control −1 ≤ u ≤ 1.5 in Q = (0, π) × (0, π). The desired
state is given by yd = sin(x) sin(t) and the control shift ud vanishes identically. We set
κ = 10−3. The optimal solution of this problem is unknown.

We solve the problem first by the femnlin solver on a set of uniformly refined meshes.
As initial mesh we use the coarsest suggestion of COMSOL Multiphysics. The smoothing
parameter for the projection is ε = 10−4.

In Table 1 we display the values of ‖y − yd‖, ‖u‖2 and J depending on the number
of refinements of the grid. We observe first that the solution process converges for all
choices of grid sizes. The number of Newton iterations seems to be mesh independent.
The values of ‖yh − yd‖ and ‖uh‖ suggest convergence with respect to the grid size h.

22



#refinements #grid points #iterations ‖yh − yd‖ ‖uh‖ J(y, u)

0 61 7 0.18416 2.9992 0.021456

1 221 8 0.18152 3.0184 0.02103

2 841 8 0.18128 3.0223 0.020999

3 3281 8 0.18124 3.0238 0.020996

4 12961 8 0.18123 3.0243 0.020996

5 51521 12 0.18123 3.0244 0.020996

Table 1: Uniformly refined mesh. Values of ‖y − yd‖ and J(y, u)

Next, we use the adaptive solver on the initial mesh of the computation reflected
by Table 1. We control the number of new grids created by the error controller of the
adaptive solver. The values of ‖yh − yd‖, ‖uh‖, and J(yh, uh) in Table 2 are comparable
with the results shown in Table 1.

ngen #grid points #iterations ‖yh − yd‖ ‖uh‖ J(yh, uh)

1 139 13 0.1818 3.0115 0.02106

2 311 15 0.18147 3.0185 0.021021

3 725 16 0.1813 3.0218 0.021001

4 1661 17 0.18126 3.0232 0.020997

5 3867 18 0.18124 3.0240 0.020996

6 8884 19 0.18124 3.0242 0.020996

Table 2: Adaptively refined mesh. Values of ‖y − yd‖ and J(y, u)

Having the convergence result of Theorem 5.12, it is worth to compare solutions com-
puted by the regularized projection with solutions computed by the COMSOL’s build-in
min/max functions. We start with ε = 1 and decrease ε down to ε = 10−5. In Table
3 we present the relative difference between the solutions computed by the regularized
projection formula — indicated by yε, uε , and pε, respectively. — and the solutions
computed using the COMSOL Multiphysics build-in min/max functions, indicated by an
asterix, i.e. the values

∣∣‖yε‖ − ‖y∗‖
∣∣/‖y∗‖, ∣∣‖uε‖ − ‖u∗‖

∣∣/‖u∗‖, and ∣∣‖pε‖ − ‖p∗‖
∣∣/‖p∗‖

depending on ε.
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ε
∣∣‖yε‖ − ‖y∗‖

∣∣/‖y∗‖ ∣∣‖uε‖ − ‖u∗‖
∣∣/‖u∗‖ ∣∣‖pε‖ − ‖p∗‖

∣∣/‖p∗‖
1.0000 5.9726 e-05 6.1794 e-03 1.0430 e-03

1.0000 e-01 2.0597 e-07 2.5383 e-05 4.4768 e-06

1.0000 e-02 6.9915 e-09 2.6545 e-07 2.2903 e-07

1.0000 e-03 5.4117 e-11 2.7768 e-09 2.3401 e-09

1.0000 e-04 8.2858 e-12 1.0976 e-10 2.7099 e-10

1.0000 e-05 8.6947 e-13 1.1555 e-11 2.8522 e-11

Table 3: Relative difference between the solutions computed by the regularized projection
formula.

Figure 1 visualizes the values presented in Table 3. Note that both axes are logarithmically
scaled so that we observe (super) linear convergence.

Figure 1: Relative difference between the solutions computed by the regularized projection
formula. Both axis are scaled logarithmically.
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